Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Bannert E et al. Plasma kinetics and matrix residues of deoxynivalenol (DON) and zearalenone (ZEN) are altered in endotoxaemic pigs independent of LPS entry site. 2017 Mycotoxin Res pmid:28470577
Tan DC et al. Mycotoxins produced by Fusarium spp. associated with Fusarium head blight of wheat in Western Australia. 2012 Mycotoxin Res pmid:23606046
Pleadin J et al. Mould and mycotoxin contamination of pig feed in northwest Croatia. 2012 Mycotoxin Res pmid:23606122
Rempe I et al. Hydrothermal treatment of naturally contaminated maize in the presence of sodium metabisulfite, methylamine and calcium hydroxide; effects on the concentration of zearalenone and deoxynivalenol. 2013 Mycotoxin Res pmid:23536360
Sugiyama K et al. Thioredoxin-1 contributes to protection against DON-induced oxidative damage in HepG2 cells. 2012 Mycotoxin Res pmid:23606123
Dänicke S et al. Inactivation of deoxynivalenol-contaminated cereal grains with sodium metabisulfite: a review of procedures and toxicological aspects. 2012 Mycotoxin Res pmid:23606192
Lohölter M et al. Effects of the thermal environment on metabolism of deoxynivalenol and thermoregulatory response of sheep fed on corn silage grown at enriched atmospheric carbon dioxide and drought. 2012 Mycotoxin Res pmid:23606193
Oldenburg E and Schittenhelm S Effect of plant water deficit on the deoxynivalenol concentration in Fusarium-infected maize kernels. 2012 Mycotoxin Res pmid:23606194
Halawa A et al. Effects of deoxynivalenol and lipopolysaccharide on electrophysiological parameters in growing pigs. 2012 Mycotoxin Res pmid:23606196
Häggblom P and Nordkvist E Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales. 2015 Mycotoxin Res pmid:25665688
Perkowski J et al. Mycotoxins in cereal grain. Part 13. Deoxynivalenol and 3-acetyl-deoxynivalenol in wheat kernels and chaff with head fusariosis symptoms. 1990 Nahrung pmid:2388686
Perkowski J Distribution of deoxynivalenol in barley kernels infected by Fusarium. 1998 Nahrung pmid:9631371
Grabarkiewicz-Szczesna J et al. Fusariotoxins in kernels of winter wheat cultivars field samples collected during 1993 in Poland. 2001 Nahrung pmid:11253636
Aziz NH et al. Effect of gamma-irradiation on the natural occurrence of Fusarium mycotoxins in wheat, flour and bread. 1997 Nahrung pmid:9113669
Perkowski J and Kaczmarek Z Distribution of deoxynivalenol and 3-acetyldeoxynivalenol in naturally contaminated and Fusarium culmorum infected triticale samples. 2002 Nahrung pmid:12577591
Rizzo AF et al. The hemolytic activity of deoxynivalenol and T-2 toxin. 1992 Nat. Toxins pmid:1344904
Plattner RD HPLC/MS analysis of fusarium mycotoxins, fumonisins and deoxynivalenol. 1999 Nat. Toxins pmid:11122531
Miller JD and Ewen MA Toxic effects of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars Frontana and Casavant. 1997 Nat. Toxins pmid:9615311
Cossette F and Miller JD Phytotoxic effect of deoxynivalenol and gibberella ear rot resistance of corn. 1995 Nat. Toxins pmid:8581324
Gilbert J Analysis of mycotoxins in food and feed: certification of DON in wheat and maize. 1995 Nat. Toxins pmid:7582627
Yuwai KE et al. Occurrence of nivalenol, deoxynivalenol, and zearalenone in imported cereals in Papua, New Guinea. 1994 Nat. Toxins pmid:8032690
Böswald C et al. Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance. 1995 Nat. Toxins pmid:7648022
Prelusky DB Effect of intraperitoneal infusion of deoxynivalenol on feed consumption and weight gain in the pig. 1997 Nat. Toxins pmid:9285917
Prelusky DB et al. Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. 1994 Nat. Toxins pmid:8087437
Prelusky DB and Trenholm HL The efficacy of various classes of anti-emetics in preventing deoxynivalenol-induced vomiting in swine. 1993 Nat. Toxins pmid:8167950
Kollarczik B et al. In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. 1994 Nat. Toxins pmid:8087428
Modra H et al. The effects of mycotoxin deoxynivalenol (DON) on haematological and biochemical parameters and selected parameters of oxidative stress in piglets. 2013 Neuro Endocrinol. Lett. pmid:24362098
Gaigé S et al. c-Fos immunoreactivity in the pig brain following deoxynivalenol intoxication: focus on NUCB2/nesfatin-1 expressing neurons. 2013 Neurotoxicology pmid:23164930
Fan J et al. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. 2013 New Phytol. pmid:23442154
Yun Y et al. Functional analysis of the Fusarium graminearum phosphatome. 2015 New Phytol. pmid:25758923
Gu Q et al. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. 2015 New Phytol. pmid:25388878
Yu F et al. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. 2014 New Phytol. pmid:24684168
Chen X et al. Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants. 2009 New Phytol. pmid:19383094
Turner PC et al. The role of biomarkers in evaluating human health concerns from fungal contaminants in food. 2012 Nutr Res Rev pmid:22651937
Hsia CC et al. Nivalenol, a main Fusarium toxin in dietary foods from high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignant tumors in mice. 2004 Oncol. Rep. pmid:15254715
Afshar AS et al. Double mutation in tomato ribosomal protein L3 cDNA confers tolerance to deoxynivalenol (DON) in transgenic tobacco. 2007 Pak. J. Biol. Sci. pmid:19070152
Ossenkopp KP et al. Deoxynivalenol (vomitoxin)-induced conditioned taste aversions in rats are mediated by the chemosensitive area postrema. 1994 Pharmacol. Biochem. Behav. pmid:8146230
Clark DE et al. Effects of vomitoxin (deoxynivalenol) on conditioned saccharin aversion and food consumption in adult rats. 1987 Pharmacol. Biochem. Behav. pmid:3628439
Atroshi F et al. Effects of tamoxifen, melatonin, coenzyme Q10, and L-carnitine supplementation on bacterial growth in the presence of mycotoxins. 1998 Pharmacol. Res. pmid:9774492
Delgado JA et al. Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum. 2010 Phytopathology pmid:20128703
Li X et al. Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene. 2010 Phytopathology pmid:20055652
Malbrán I et al. Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. 2014 Phytopathology pmid:24168045
Bushnell WR et al. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues. 2010 Phytopathology pmid:19968547
Jin F et al. Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected U.S. winter wheat. 2014 Phytopathology pmid:24400658
Sneller C et al. Variation for resistance to kernel infection and toxin accumulation in winter wheat infected with Fusarium graminearum. 2012 Phytopathology pmid:21848396
Zuo DY et al. A Deoxynivalenol-Activated Methionyl-tRNA Synthetase Gene from Wheat Encodes a Nuclear Localized Protein and Protects Plants Against Fusarium Pathogens and Mycotoxins. 2016 Phytopathology pmid:26882849
Ponts N et al. Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. 2011 Phytopathology pmid:21405995
Cowger C et al. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. 2009 Phytopathology pmid:19271972
Cowger C and Arellano C Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. 2013 Phytopathology pmid:23252971
Kuhnem PR et al. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests. 2015 Phytopathology pmid:25338173