Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

MeSH term MeSH ID Detail
Weight Loss D015431 56 associated lipids
Anorexia D000855 8 associated lipids
Mycoses D009181 18 associated lipids
Coronavirus Infections D018352 4 associated lipids
Mycotoxicosis D015651 5 associated lipids
Adrenocortical Carcinoma D018268 4 associated lipids
Splenic Diseases D013158 5 associated lipids
Kashin-Beck Disease D057767 2 associated lipids
Ascaridiasis D001198 1 associated lipids
Per page 10 20 50 | Total 29

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Brera C et al. Exposure assessment for Italian population groups to deoxynivalenol deriving from pasta consumption. 2013 Toxins (Basel) pmid:24287568
Basso K et al. Deoxynivanelol and fumonisin, alone or in combination, induce changes on intestinal junction complexes and in E-cadherin expression. 2013 Toxins (Basel) pmid:24287571
Weaver AC et al. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. 2013 Toxins (Basel) pmid:23867763
Wilson NM et al. Modification of the Mycotoxin Deoxynivalenol Using Microorganisms Isolated from Environmental Samples. 2017 Toxins (Basel) pmid:28420137
Drakulic J et al. Contrasting Roles of Deoxynivalenol and Nivalenol in Host-Mediated Interactions between Fusarium graminearum and Sitobion avenae. 2016 Toxins (Basel) pmid:27916862
Alizadeh A et al. Deoxynivalenol and Its Modified Forms: Are There Major Differences? 2016 Toxins (Basel) pmid:27854268
Tian Y et al. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum. 2016 Toxins (Basel) pmid:27854265
Uhlig S et al. Glutathione-Conjugates of Deoxynivalenol in Naturally Contaminated Grain Are Primarily Linked via the Epoxide Group. 2016 Toxins (Basel) pmid:27845722
Eckard S et al. Incidence of Fusarium species and mycotoxins in silage maize. 2011 Toxins (Basel) pmid:22069750
Wells L et al. Determination of Deoxynivalenol in the Urine of Pregnant Women in the UK. 2016 Toxins (Basel) pmid:27792137
He WJ et al. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment. 2016 Toxins (Basel) pmid:27669304
Zhang ZQ et al. Phosphoproteome Analysis Reveals the Molecular Mechanisms Underlying Deoxynivalenol-Induced Intestinal Toxicity in IPEC-J2 Cells. 2016 Toxins (Basel) pmid:27669298
Audenaert K et al. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. 2014 Toxins (Basel) pmid:24451843
Giménez I et al. Effects of bread making and wheat germ addition on the natural deoxynivalenol content in bread. 2014 Toxins (Basel) pmid:24451845
Fruhmann P et al. Stereoselective Luche reduction of deoxynivalenol and three of its acetylated derivatives at C8. 2014 Toxins (Basel) pmid:24434906
Ansari KI et al. Light influences how the fungal toxin deoxynivalenol affects plant cell death and defense responses. 2014 Toxins (Basel) pmid:24561479
Wiwart M et al. The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith) Sacc. 2016 Toxins (Basel) pmid:27092526
Pietsch C et al. Organ damage and hepatic lipid accumulation in carp (Cyprinus carpio L.) after feed-borne exposure to the mycotoxin, deoxynivalenol (DON). 2014 Toxins (Basel) pmid:24566729
Sanders M et al. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust. 2016 Toxins (Basel) pmid:27077883
Wu L et al. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology. 2017 Toxins (Basel) pmid:28208576
Suzuki T and Iwahashi Y Acetylated Deoxynivalenol Generates Differences of Gene Expression that Discriminate Trichothecene Toxicity. 2016 Toxins (Basel) pmid:26861396
Goossens J et al. Influence of mycotoxins and a mycotoxin adsorbing agent on the oral bioavailability of commonly used antibiotics in pigs. 2012 Toxins (Basel) pmid:22606377
Tesch T et al. Does Dietary Deoxynivalenol Modulate the Acute Phase Reaction in Endotoxaemic Pigs?--Lessons from Clinical Signs, White Blood Cell Counts, and TNF-Alpha. 2015 Toxins (Basel) pmid:26703732
Saint-Cyr MJ et al. Risk Assessment of Deoxynivalenol by Revisiting Its Bioavailability in Pig and Rat Models to Establish Which Is More Suitable. 2015 Toxins (Basel) pmid:26633505
Bannert E et al. Metabolic and hematological consequences of dietary deoxynivalenol interacting with systemic Escherichia coli lipopolysaccharide. 2015 Toxins (Basel) pmid:26580654
Schwartz-Zimmermann HE et al. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. 2015 Toxins (Basel) pmid:26569307
Clark ES et al. Murine Anorectic Response to Deoxynivalenol (Vomitoxin) Is Sex-Dependent. 2015 Toxins (Basel) pmid:26230710
Generotti S et al. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology. 2015 Toxins (Basel) pmid:26213969
Michlmayr H et al. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-D-glucoside. 2015 Toxins (Basel) pmid:26197338
Alizadeh A et al. Deoxynivalenol Impairs Weight Gain and Affects Markers of Gut Health after Low-Dose, Short-Term Exposure of Growing Pigs. 2015 Toxins (Basel) pmid:26067367
Hassan YI et al. A novel Peptide-binding motifs inference approach to understand deoxynivalenol molecular toxicity. 2015 Toxins (Basel) pmid:26043274
Cheat S et al. Nivalenol has a greater impact than deoxynivalenol on pig jejunum mucosa in vitro on explants and in vivo on intestinal loops. 2015 Toxins (Basel) pmid:26035490
Tola S et al. Effects of Wheat Naturally Contaminated with Fusarium Mycotoxins on Growth Performance and Selected Health Indices of Red Tilapia (Oreochromis niloticus × O. mossambicus). 2015 Toxins (Basel) pmid:26035489
Antonissen G et al. Chronic exposure to deoxynivalenol has no influence on the oral bioavailability of fumonisin B1 in broiler chickens. 2015 Toxins (Basel) pmid:25690690
Zhou HR et al. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. 2014 Toxins (Basel) pmid:25521494
De Girolamo A et al. Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy. 2014 Toxins (Basel) pmid:25384107
Devreese M et al. Efficacy of active carbon towards the absorption of deoxynivalenol in pigs. 2014 Toxins (Basel) pmid:25337799
Pietsch C et al. Occurrence of deoxynivalenol and zearalenone in commercial fish feed: an initial study. 2013 Toxins (Basel) pmid:23325300
Mesterházy A et al. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. 2011 Toxins (Basel) pmid:22174980
Streit E et al. Current situation of mycotoxin contamination and co-occurrence in animal feed--focus on Europe. 2012 Toxins (Basel) pmid:23162698
Njobeh PB et al. Estimation of multi-mycotoxin contamination in South African compound feeds. 2012 Toxins (Basel) pmid:23162700
Gajęcka M et al. The expression of type-1 and type-2 nitric oxide synthase in selected tissues of the gastrointestinal tract during mixed mycotoxicosis. 2013 Toxins (Basel) pmid:24284830
Awad W et al. The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. 2013 Toxins (Basel) pmid:23628787
Maresca M From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. 2013 Toxins (Basel) pmid:23612752
Subramaniam R and Rampitsch C Towards systems biology of mycotoxin regulation. 2013 Toxins (Basel) pmid:23598563
Weaver AC et al. Protective effect of two yeast based feed additives on pigs chronically exposed to deoxynivalenol and zearalenone. 2014 Toxins (Basel) pmid:25533517
Bonnet MS et al. Advances in deoxynivalenol toxicity mechanisms: the brain as a target. 2012 Toxins (Basel) pmid:23202308
Kim DH et al. Incidence and levels of deoxynivalenol, fumonisins and zearalenone contaminants in animal feeds used in Korea in 2012. 2014 Toxins (Basel) pmid:24366207
Wegulo SN Factors influencing deoxynivalenol accumulation in small grain cereals. 2012 Toxins (Basel) pmid:23202310
Qiu J and Shi J Genetic relationships, carbendazim sensitivity and mycotoxin production of the Fusarium graminearum populations from maize, wheat and rice in eastern China. 2014 Toxins (Basel) pmid:25093387