Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

MeSH term MeSH ID Detail
Weight Loss D015431 56 associated lipids
Anorexia D000855 8 associated lipids
Mycoses D009181 18 associated lipids
Coronavirus Infections D018352 4 associated lipids
Mycotoxicosis D015651 5 associated lipids
Adrenocortical Carcinoma D018268 4 associated lipids
Splenic Diseases D013158 5 associated lipids
Kashin-Beck Disease D057767 2 associated lipids
Ascaridiasis D001198 1 associated lipids
Per page 10 20 50 | Total 29

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Brera C et al. Exposure assessment for Italian population groups to deoxynivalenol deriving from pasta consumption. 2013 Toxins (Basel) pmid:24287568
Basso K et al. Deoxynivanelol and fumonisin, alone or in combination, induce changes on intestinal junction complexes and in E-cadherin expression. 2013 Toxins (Basel) pmid:24287571
Wilson NM et al. Modification of the Mycotoxin Deoxynivalenol Using Microorganisms Isolated from Environmental Samples. 2017 Toxins (Basel) pmid:28420137
Cirlini M et al. Durum wheat (Triticum Durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions. 2014 Toxins (Basel) pmid:24368326
Ovando-Martínez M et al. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in hard red spring wheat inoculated with Fusarium graminearum. 2013 Toxins (Basel) pmid:24351715
Simsek S et al. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in hard red spring wheat grown in the USA. 2013 Toxins (Basel) pmid:24351720
Wiwart M et al. The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith) Sacc. 2016 Toxins (Basel) pmid:27092526
Sanders M et al. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust. 2016 Toxins (Basel) pmid:27077883
Forrer HR et al. Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid. 2014 Toxins (Basel) pmid:24577585
Waśkiewicz A et al. Deoxynivalenol in the gastrointestinal tract of immature gilts under per os toxin application. 2014 Toxins (Basel) pmid:24603665
Clark ES et al. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses. 2015 Toxins (Basel) pmid:26492270
Ali N et al. Deoxynivalenol Exposure Assessment for Pregnant Women in Bangladesh. 2015 Toxins (Basel) pmid:26404372
Schmeitzl C et al. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate. 2015 Toxins (Basel) pmid:26274975
Clark ES et al. Murine Anorectic Response to Deoxynivalenol (Vomitoxin) Is Sex-Dependent. 2015 Toxins (Basel) pmid:26230710
Generotti S et al. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology. 2015 Toxins (Basel) pmid:26213969
Bryła M et al. Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland. 2016 Toxins (Basel) pmid:27231939
Paulick M et al. Effects of increasing concentrations of sodium sulfite on deoxynivalenol and deoxynivalenol sulfonate concentrations of maize kernels and maize meal preserved at various moisture content. 2015 Toxins (Basel) pmid:25760079
Ji F et al. Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance. 2015 Toxins (Basel) pmid:25751146
Rodríguez-Carrasco Y et al. Preliminary estimation of deoxynivalenol excretion through a 24 h pilot study. 2015 Toxins (Basel) pmid:25723325
Manda G et al. Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells. 2015 Toxins (Basel) pmid:25690693
Antonissen G et al. Chronic exposure to deoxynivalenol has no influence on the oral bioavailability of fumonisin B1 in broiler chickens. 2015 Toxins (Basel) pmid:25690690
Pinton P and Oswald IP Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. 2014 Toxins (Basel) pmid:24859243
Moretti A et al. Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol. 2014 Toxins (Basel) pmid:24727554
Gajęcka M et al. The expression of type-1 and type-2 nitric oxide synthase in selected tissues of the gastrointestinal tract during mixed mycotoxicosis. 2013 Toxins (Basel) pmid:24284830
Weaver AC et al. Protective effect of two yeast based feed additives on pigs chronically exposed to deoxynivalenol and zearalenone. 2014 Toxins (Basel) pmid:25533517
Kim DH et al. Incidence and levels of deoxynivalenol, fumonisins and zearalenone contaminants in animal feeds used in Korea in 2012. 2014 Toxins (Basel) pmid:24366207
Waśkiewicz A et al. Deoxynivalenol and oxidative stress indicators in winter wheat inoculated with Fusarium graminearum. 2014 Toxins (Basel) pmid:24514944
Sliková S et al. Occurrence of deoxynivalenol in wheat in Slovakia during 2010 and 2011. 2013 Toxins (Basel) pmid:23917334
Ivanova L et al. Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. 2006 Toxicon pmid:16730043
Abbas HK et al. Cytotoxicity and phytotoxicity of trichothecene mycotoxins produced by Fusarium spp. 2013 Toxicon pmid:23933195
Luongo D et al. Effects of four Fusarium toxins (fumonisin B(1), alpha-zearalenol, nivalenol and deoxynivalenol) on porcine whole-blood cellular proliferation. 2008 Toxicon pmid:18620720
Ruiz MJ et al. Toxicological interactions between the mycotoxins beauvericin, deoxynivalenol and T-2 toxin in CHO-K1 cells in vitro. 2011 Toxicon pmid:21821061
Ficheux AS et al. Co-exposure of Fusarium mycotoxins: in vitro myelotoxicity assessment on human hematopoietic progenitors. 2012 Toxicon pmid:22921581
Gajęcka M et al. Changes in the metabolic profile and body weight of pre-pubertal gilts during prolonged monotonic exposure to low doses of zearalenone and deoxynivalenol. 2017 Toxicon pmid:27840141
Ji J et al. GC-TOF/MS-based metabolomic strategy for combined toxicity effects of deoxynivalenol and zearalenone on murine macrophage ANA-1 cells. 2016 Toxicon pmid:27530666
Albonico M et al. Toxicological effects of fumonisin B1 alone and in combination with other fusariotoxins on bovine granulosa cells. 2016 Toxicon pmid:27108238
Pizzo F et al. In vitro effects of deoxynivalenol and zearalenone major metabolites alone and combined, on cell proliferation, steroid production and gene expression in bovine small-follicle granulosa cells. 2016 Toxicon pmid:26657070
Ueno Y et al. Examination of Chinese and U.S.S.R. cereals for the Fusarium mycotoxins, nivalenol, deoxynivalenol and zearalenone. 1986 Toxicon pmid:2944249
Dinu D et al. Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. 2011 Toxicon pmid:21549142
Lucioli J et al. The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: interest of ex vivo models as an alternative to in vivo experiments. 2013 Toxicon pmid:23403092
Caloni F et al. Effects of a trichothecene, T-2 toxin, on proliferation and steroid production by porcine granulosa cells. 2009 Toxicon pmid:19463844
Sun LH et al. Individual and combined cytotoxic effects of aflatoxin B1, zearalenone, deoxynivalenol and fumonisin B1 on BRL 3A rat liver cells. 2015 Toxicon pmid:25549941
Zhang X et al. The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. 2009 Toxicon pmid:19486909
Luongo D et al. Trichothecenes NIV and DON modulate the maturation of murine dendritic cells. 2010 Toxicon pmid:19635492
Kouadio JH et al. Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. 2007 Toxicon pmid:17109910
Zielonka Ł et al. The effect of environmental mycotoxins on selected ovarian tissue fragments of multiparous female wild boars at the beginning of astronomical winter. 2014 Toxicon pmid:25016169
Bensassi F et al. In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. 2014 Toxicon pmid:24680766
Instanes C and Hetland G Deoxynivalenol (DON) is toxic to human colonic, lung and monocytic cell lines, but does not increase the IgE response in a mouse model for allergy. 2004 Toxicology pmid:15369845
Yang H et al. Ribotoxic mycotoxin deoxynivalenol induces G2/M cell cycle arrest via p21Cip/WAF1 mRNA stabilization in human epithelial cells. 2008 Toxicology pmid:18006205
Kouadio JH et al. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. 2005 Toxicology pmid:16019124