Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Diamond M et al. The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. 2013 PLoS ONE pmid:23922734
He X et al. Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.). 2013 Theor. Appl. Genet. pmid:23959525
Abia WA et al. Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. 2013 Food Chem. Toxicol. pmid:24128729
Shephard GS et al. Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. 2013 Food Chem. Toxicol. pmid:23985452
Dänicke S et al. Ascaridia galli infection affects pullets differently when feed is contaminated with the Fusarium toxin deoxynivalenol (DON). 2013 Vet. Parasitol. pmid:24113465
Fan J et al. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. 2013 New Phytol. pmid:23442154
Pasquali M et al. FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. 2013 PLoS ONE pmid:23451228
Lee HM et al. Development of a monoclonal antibody against deoxynivalenol for magnetic nanoparticle-based extraction and an enzyme-linked immunosorbent assay. 2013 J. Vet. Sci. pmid:23388439
Ovando-Martínez M et al. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in hard red spring wheat inoculated with Fusarium graminearum. 2013 Toxins (Basel) pmid:24351715
Xiao H et al. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: I. Growth performance, immune function, and antioxidation capacity. 2013 J. Anim. Sci. pmid:23965387
Xiao H et al. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function. 2013 J. Anim. Sci. pmid:23965392
Martínez G et al. Penetration of fosfomycin into IPEC-J2 cells in the presence or absence of deoxynivalenol. 2013 PLoS ONE pmid:24040387
Ghareeb K et al. Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. 2013 PLoS ONE pmid:23977054
Wu W et al. Comparison of emetic potencies of the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol. 2013 Toxicol. Sci. pmid:22997060
Liu X et al. Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum. 2013 Mol. Plant Pathol. pmid:22947191
Rempe I et al. Effects of a Fusarium toxin-contaminated maize treated with sodium metabisulphite, methylamine and calcium hydroxide in diets for female piglets. 2013 Arch Anim Nutr pmid:23859352
Gauthier T et al. Deoxynivalenol impairs the immune functions of neutrophils. 2013 Mol Nutr Food Res pmid:23427020
Yunus AW and Böhm J Serum cation profile of broilers at various stages of exposure to deoxynivalenol. 2013 Mycotoxin Res pmid:23430398
Yoshinari T et al. Inter-laboratory study of an LC-MS/MS method for simultaneous determination of deoxynivalenol and its acetylated derivatives, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol in wheat. 2013 Shokuhin Eiseigaku Zasshi pmid:23470877
Wu W et al. Peptide YY3-36 and 5-hydroxytryptamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin). 2013 Toxicol. Sci. pmid:23457120
Choi BK et al. Effects of oral deoxynivalenol exposure on immune-related parameters in lymphoid organs and serum of mice vaccinated with porcine parvovirus vaccine. 2013 Mycotoxin Res pmid:23436220
Tamura C et al. Formulation of a pectin gel that efficiently traps mycotoxin deoxynivalenol and reduces its bioavailability. 2013 Carbohydr Polym pmid:23499119
Kullik K et al. Interactions between the Fusarium toxin deoxynivalenol and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. 2013 Food Chem. Toxicol. pmid:23500770
Lucioli J et al. The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: interest of ex vivo models as an alternative to in vivo experiments. 2013 Toxicon pmid:23403092
Kadota T et al. Comparative study of deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol on intestinal transport and IL-8 secretion in the human cell line Caco-2. 2013 Toxicol In Vitro pmid:23792671
Dänicke S and Brezina U Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: consequences for diagnosis of exposure and intoxication and carry over. 2013 Food Chem. Toxicol. pmid:23872131
Fredlund E et al. Deoxynivalenol and other selected Fusarium toxins in Swedish oats--occurrence and correlation to specific Fusarium species. 2013 Int. J. Food Microbiol. pmid:23962918
Lindblad M et al. Deoxynivalenol and other selected Fusarium toxins in Swedish wheat--occurrence and correlation to specific Fusarium species. 2013 Int. J. Food Microbiol. pmid:23962919
Escobar J et al. Occurrence and exposure assessment of Fusarium mycotoxins in maize germ, refined corn oil and margarine. 2013 Food Chem. Toxicol. pmid:24056029
Li Y et al. Study of the interaction of deoxynivalenol with human serum albumin by spectroscopic technique and molecular modelling. 2013 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:23205852
Hiraoka H et al. Modified use of a commercial ELISA kit for deoxynivalenol determination in rice and corn silage. 2013 Mycotoxin Res pmid:23275133
Ito M et al. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol. 2013 Appl. Environ. Microbiol. pmid:23275503
Sifuentes dos Santos J et al. Natural occurrence of deoxynivalenol in wheat from Paraná State, Brazil and estimated daily intake by wheat products. 2013 Food Chem pmid:23265460
Pan X et al. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage. 2013 Toxicol. Appl. Pharmacol. pmid:23352502
Cano PM et al. Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: an emerging hypothesis through possible modulation of Th17-mediated response. 2013 PLoS ONE pmid:23326479
Fu J et al. Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum. 2013 Fungal Biol pmid:23332829
Gratz SW et al. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol. 2013 Appl. Environ. Microbiol. pmid:23315729
Li S et al. Water-based slow injection ultrasound-assisted emulsification microextraction for the determination of deoxynivalenol and de-epoxy-deoxynivalenol in maize and pork samples. 2013 Anal Bioanal Chem pmid:23380955
Uhlig S et al. Enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. 2013 J. Agric. Food Chem. pmid:23374009
Hirano S and Kataoka T Deoxynivalenol induces ectodomain shedding of TNF receptor 1 and thereby inhibits the TNF-α-induced NF-κB signaling pathway. 2013 Eur. J. Pharmacol. pmid:23357557
Linkmeyer A et al. Assessment and introduction of quantitative resistance to Fusarium head blight in elite spring barley. 2013 Phytopathology pmid:23777405
Sanders M et al. Sampling of wheat dust and subsequent analysis of deoxynivalenol by LC-MS/MS. 2013 J. Agric. Food Chem. pmid:23782015
Alassane-Kpembi I et al. New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. 2013 Toxicol. Appl. Pharmacol. pmid:23735874
Schweiger W et al. Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes. 2013 Mol. Plant Pathol. pmid:23738863
Winter M et al. Mechanisms regulating grain contamination with trichothecenes translocated from the stem base of wheat (Triticum aestivum) infected with Fusarium culmorum. 2013 Phytopathology pmid:23758328
Ngampongsa S et al. Toxic effects of T-2 toxin and deoxynivalenol on the mitochondrial electron transport system of cardiomyocytes in rats. 2013 J Toxicol Sci pmid:23719927
He K et al. Modulation of inflammatory gene expression by the ribotoxin deoxynivalenol involves coordinate regulation of the transcriptome and translatome. 2013 Toxicol. Sci. pmid:22968694
Sliková S et al. Occurrence of deoxynivalenol in wheat in Slovakia during 2010 and 2011. 2013 Toxins (Basel) pmid:23917334
Osselaere A et al. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. 2013 PLoS ONE pmid:23922676
Wu L et al. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. 2013 PLoS ONE pmid:23922725