Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

MeSH term MeSH ID Detail
Swine Diseases D013553 16 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Weight Gain D015430 101 associated lipids
Weight Loss D015431 56 associated lipids
Mycotoxicosis D015651 5 associated lipids
Adrenocortical Carcinoma D018268 4 associated lipids
Coronavirus Infections D018352 4 associated lipids
Fetal Weight D020567 12 associated lipids
Kashin-Beck Disease D057767 2 associated lipids
Per page 10 20 50 | Total 29

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Drakulic J et al. Contrasting Roles of Deoxynivalenol and Nivalenol in Host-Mediated Interactions between Fusarium graminearum and Sitobion avenae. 2016 Toxins (Basel) pmid:27916862
Alizadeh A et al. Deoxynivalenol and Its Modified Forms: Are There Major Differences? 2016 Toxins (Basel) pmid:27854268
Tian Y et al. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum. 2016 Toxins (Basel) pmid:27854265
Uhlig S et al. Glutathione-Conjugates of Deoxynivalenol in Naturally Contaminated Grain Are Primarily Linked via the Epoxide Group. 2016 Toxins (Basel) pmid:27845722
Audenaert K et al. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. 2014 Toxins (Basel) pmid:24451843
Giménez I et al. Effects of bread making and wheat germ addition on the natural deoxynivalenol content in bread. 2014 Toxins (Basel) pmid:24451845
Suzuki T and Iwahashi Y Acetylated Deoxynivalenol Generates Differences of Gene Expression that Discriminate Trichothecene Toxicity. 2016 Toxins (Basel) pmid:26861396
Goossens J et al. Influence of mycotoxins and a mycotoxin adsorbing agent on the oral bioavailability of commonly used antibiotics in pigs. 2012 Toxins (Basel) pmid:22606377
Generotti S et al. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology. 2015 Toxins (Basel) pmid:26213969
Michlmayr H et al. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-D-glucoside. 2015 Toxins (Basel) pmid:26197338
Alizadeh A et al. Deoxynivalenol Impairs Weight Gain and Affects Markers of Gut Health after Low-Dose, Short-Term Exposure of Growing Pigs. 2015 Toxins (Basel) pmid:26067367
Hassan YI et al. A novel Peptide-binding motifs inference approach to understand deoxynivalenol molecular toxicity. 2015 Toxins (Basel) pmid:26043274
Zhou HR et al. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. 2014 Toxins (Basel) pmid:25521494
Pietsch C et al. Occurrence of deoxynivalenol and zearalenone in commercial fish feed: an initial study. 2013 Toxins (Basel) pmid:23325300
Mesterházy A et al. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. 2011 Toxins (Basel) pmid:22174980
Streit E et al. Current situation of mycotoxin contamination and co-occurrence in animal feed--focus on Europe. 2012 Toxins (Basel) pmid:23162698
Njobeh PB et al. Estimation of multi-mycotoxin contamination in South African compound feeds. 2012 Toxins (Basel) pmid:23162700
Awad W et al. The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. 2013 Toxins (Basel) pmid:23628787
Maresca M From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. 2013 Toxins (Basel) pmid:23612752
Subramaniam R and Rampitsch C Towards systems biology of mycotoxin regulation. 2013 Toxins (Basel) pmid:23598563