Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

MeSH term MeSH ID Detail
Ascaridiasis D001198 1 associated lipids
Kashin-Beck Disease D057767 2 associated lipids
Coronavirus Infections D018352 4 associated lipids
Adrenocortical Carcinoma D018268 4 associated lipids
Splenic Diseases D013158 5 associated lipids
Mycotoxicosis D015651 5 associated lipids
Bronchopneumonia D001996 7 associated lipids
Glomerulonephritis, IGA D005922 7 associated lipids
Anorexia D000855 8 associated lipids
Immune Complex Diseases D007105 9 associated lipids
Per page 10 20 50 | Total 29

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Maragos C et al. Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol. 2006 Food Addit Contam pmid:16807207
Dänicke S et al. Effects of the Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs. 2006 Toxicol. Lett. pmid:16814494
Hajjaji A et al. Occurrence of mycotoxins (ochratoxin A, deoxynivalenol) and toxigenic fungi in Moroccan wheat grains: impact of ecological factors on the growth and ochratoxin A production. 2006 Mol Nutr Food Res pmid:16676377
Quarta A et al. Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. 2006 FEMS Microbiol. Lett. pmid:16684095
Ivanova L et al. Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. 2006 Toxicon pmid:16730043
Boddu J et al. Transcriptome analysis of the barley-Fusarium graminearum interaction. 2006 Mol. Plant Microbe Interact. pmid:16610744
Gouze ME et al. Effect of various doses of deoxynivalenol on liver xenobiotic metabolizing enzymes in mice. 2006 Food Chem. Toxicol. pmid:16209902
Ramirez ML et al. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. 2006 Int. J. Food Microbiol. pmid:16236377
Islam Z and Pestka JJ LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. 2006 Toxicol. Appl. Pharmacol. pmid:16009389
Sugita-Konishi Y et al. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products. 2006 Biosci. Biotechnol. Biochem. pmid:16861811
Anselme M et al. Comparison of ochratoxin A and deoxynivalenol in organically and conventionally produced beers sold on the Belgian market. 2006 Food Addit Contam pmid:16901860
Díaz-Llano G and Smith TK Effects of feeding grains naturally contaminated with Fusarium mycotoxins with and without a polymeric glucomannan mycotoxin adsorbent on reproductive performance and serum chemistry of pregnant gilts. 2006 J. Anim. Sci. pmid:16908638
Bretz M et al. Thermal degradation of the Fusarium mycotoxin deoxynivalenol. 2006 J. Agric. Food Chem. pmid:16910743
Drochner W et al. Subacute effects of moderate feed loads of isolated Fusarium toxin deoxynivalenol on selected parameters of metabolism in weaned growing piglets. 2006 J Anim Physiol Anim Nutr (Berl) pmid:16958800
Blechová P et al. New possibilities of matrix-assisted laser desorption ionization time of flight mass spectrometry to analyze barley malt quality. Highly sensitive detection of mycotoxins. 2006 Environ. Toxicol. pmid:16841326
Cetin Y and Bullerman LB Confirmation of reduced toxicity of deoxynivalenol in extrusion-processed corn grits by the MTT bioassay. 2006 J. Agric. Food Chem. pmid:16506858
Bretz M et al. Stable isotope dilution analysis of the Fusarium mycotoxins deoxynivalenol and 3-acetyldeoxynivalenol. 2006 Mol Nutr Food Res pmid:16521158
Naef A et al. A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. 2006 FEMS Microbiol. Ecol. pmid:16420629
Awad WA et al. Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. 2006 J Anim Physiol Anim Nutr (Berl) pmid:16422767
Ngundi MM et al. Detection of deoxynivalenol in foods and indoor air using an array biosensor. 2006 Environ. Sci. Technol. pmid:16646473
Ponts N et al. Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. 2006 FEMS Microbiol. Lett. pmid:16630263
Sugita-Konsihi Y et al. Validation of an HPLC analytical method coupled to a multifunctional clean-up column for the determination of deoxynivalenol. 2006 Mycopathologia pmid:16552488
Accensi F et al. Ingestion of low doses of deoxynivalenol does not affect hematological, biochemical, or immune responses of piglets. 2006 J. Anim. Sci. pmid:16775078
Awad WA et al. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. 2006 Poult. Sci. pmid:16776464
Kottapalli B et al. Effect of electron-beam irradiation on the safety and quality of Fusarium-infected malting barley. 2006 Int. J. Food Microbiol. pmid:16780979
Bony S et al. Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the Comet assay. 2006 Toxicol. Lett. pmid:16828243
Mbandi E and Pestka JJ Deoxynivalenol and satratoxin G potentiate proinflammatory cytokine and macrophage inhibitory protein 2 induction by Listeria and Salmonella in the macrophage. 2006 J. Food Prot. pmid:16786854
MacDonald SJ et al. Determination of deoxynivalenol in cereals and cereal products by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. 2005 Jul-Aug J AOAC Int pmid:16152940
Pestka JJ and Smolinski AT Deoxynivalenol: toxicology and potential effects on humans. 2005 Jan-Feb J Toxicol Environ Health B Crit Rev pmid:15762554
Dänicke S et al. Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. 2005 J Anim Physiol Anim Nutr (Berl) pmid:16138860
Döll S et al. The efficacy of a modified aluminosilicate as a detoxifying agent in Fusarium toxin contaminated maize containing diets for piglets. 2005 J Anim Physiol Anim Nutr (Berl) pmid:16138865
Di R and Tumer NE Expression of a truncated form of ribosomal protein L3 confers resistance to pokeweed antiviral protein and the Fusarium mycotoxin deoxynivalenol. 2005 Mol. Plant Microbe Interact. pmid:16134888
Rossi F et al. Effect of Bt corn on broiler growth performance and fate of feed-derived DNA in the digestive tract. 2005 Poult. Sci. pmid:16050119
Li YH et al. [The inhibitory effect of deoxynivalenol on TAP-1 expression in human peripheral blood mononuclear cells in vitro]. 2005 Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi pmid:15766417
Jia Q and Pestka JJ Role of cyclooxygenase-2 in deoxynivalenol-induced immunoglobulin a nephropathy. 2005 Food Chem. Toxicol. pmid:15778012
Hope R et al. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. 2005 Lett. Appl. Microbiol. pmid:15752221
Zhou HR et al. Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. 2005 Toxicol. Sci. pmid:15772366
Pestka JJ et al. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. 2005 Toxicology pmid:15588914
Gouze ME et al. Individual and combined effects of low oral doses of deoxynivalenol and nivalenol in mice. 2005 Cell. Mol. Biol. (Noisy-le-grand) pmid:16375817
Holloway AC et al. DDE-induced changes in aromatase activity in endometrial stromal cells in culture. 2005 Endocrine pmid:16077170
Biancardi A et al. A rapid multiresidual determination of type A and type B trichothecenes in wheat flour by HPLC-ESI-MS. 2005 Food Addit Contam pmid:16019793
Goyarts T et al. On the effects of a chronic deoxynivalenol intoxication on performance, haematological and serum parameters of pigs when diets are offered either for ad libitum consumption or fed restrictively. 2005 J Vet Med A Physiol Pathol Clin Med pmid:16050913
Liu Y et al. Solvolysis procedures for the determination of bound residues of the mycotoxin deoxynivalenol in fusarium species infected grain of two winter wheat cultivars preinfected with barley yellow dwarf virus. 2005 J. Agric. Food Chem. pmid:16104812
Beyer M et al. Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production. 2005 Int. J. Food Microbiol. pmid:15698684
Sprando RL et al. Characterization of the effect of deoxynivalenol on selected male reproductive endpoints. 2005 Food Chem. Toxicol. pmid:15721211
Kinser S et al. Truncated deoxynivalenol-induced splenic immediate early gene response in mice consuming (n-3) polyunsaturated fatty acids. 2005 J. Nutr. Biochem. pmid:15681167
Li HP et al. Development of a generic PCR detection of deoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum. 2005 FEMS Microbiol. Lett. pmid:15686855
Le Dréan G et al. Myelotoxicity of trichothecenes and apoptosis: an in vitro study on human cord blood CD34+ hematopoietic progenitor. 2005 Toxicol In Vitro pmid:15908172
Berthiller F et al. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. 2005 J. Agric. Food Chem. pmid:15853382
Dänicke S et al. On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone. 2005 Mol Nutr Food Res pmid:16189795