Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Pestka JJ et al. Effect of dietary administration of the trichothecene vomitoxin (deoxynivalenol) on IgA and IgG secretion by Peyer's patch and splenic lymphocytes. 1990 Food Chem. Toxicol. pmid:2276698
van der Fels-Klerx HJ et al. Climate change increases deoxynivalenol contamination of wheat in north-western Europe. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22742589
Van Asselt ED et al. A Dutch field survey on fungal infection and mycotoxin concentrations in maize. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22742524
Van Der Fels-Klerx HJ et al. Mycotoxin contamination of cereal grain commodities in relation to climate in North West Europe. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22738407
Childress WL et al. Determination of deoxynivalenol (DON, vomitoxin) in wheat by high-performance liquid chromatography with photolysis and electrochemical detection (HPLC-hv-EC). 1990 J Chromatogr Sci pmid:2273063
Shale K et al. Toxicity profile of commercially produced indigenous banana beer. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22725711
van Asselt ED et al. Modelling mycotoxin formation by Fusarium graminearum in maize in The Netherlands. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22725695
Ezekiel CN et al. Fungal and bacterial metabolites in commercial poultry feed from Nigeria. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22725671
Jiang J et al. FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. 2012 Fungal Genet. Biol. pmid:22713714
van der Fels-Klerx HJ et al. Modeling deoxynivalenol contamination of wheat in northwestern Europe for climate change assessments. 2012 J. Food Prot. pmid:22691478
Zhao Y et al. A novel biosensor regulated by the rotator of F₀F₁-ATPase to detect deoxynivalenol rapidly. 2012 Biochem. Biophys. Res. Commun. pmid:22659418
Turner PC et al. The role of biomarkers in evaluating human health concerns from fungal contaminants in food. 2012 Nutr Res Rev pmid:22651937
Lippolis V et al. Comparison of slurry mixing and dry milling in laboratory sample preparation for determination of ochratoxin A and deoxynivalenol in wheat. 2012 Mar-Apr J AOAC Int pmid:22649933
Greco MV et al. Mycoflora and natural incidence of selected mycotoxins in rabbit and Chinchilla feeds. 2012 ScientificWorldJournal pmid:22649328
Khol-Parisini A et al. Highly deoxynivalenol contaminated oats and immune function in horses. 2012 Arch Anim Nutr pmid:22641926
van der Fels-Klerx HJ et al. Occurrence of Fusarium Head Blight species and Fusarium mycotoxins in winter wheat in the Netherlands in 2009. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22624849
Goossens J et al. Influence of mycotoxins and a mycotoxin adsorbing agent on the oral bioavailability of commonly used antibiotics in pigs. 2012 Toxins (Basel) pmid:22606377
Garcia D et al. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. 2012 J. Sci. Food Agric. pmid:22555960
Kolesarova A et al. Resveratrol inhibits reproductive toxicity induced by deoxynivalenol. 2012 J Environ Sci Health A Tox Hazard Subst Environ Eng pmid:22540658
Lu M et al. The effects of mycotoxins and selenium deficiency on tissue-engineered cartilage. 2012 Cells Tissues Organs (Print) pmid:22538829
Diesing AK et al. Gene regulation of intestinal porcine epithelial cells IPEC-J2 is dependent on the site of deoxynivalenol toxicological action. 2012 PLoS ONE pmid:22506013
Tunali B et al. Fitness of three Fusarium pathogens of wheat. 2012 FEMS Microbiol. Ecol. pmid:22500915
Devreese M et al. New bolus models for in vivo efficacy testing of mycotoxin-detoxifying agents in relation to EFSA guidelines, assessed using deoxynivalenol in broiler chickens. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22497259
He K et al. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage. 2012 Toxicol. Sci. pmid:22491426
Maragos CM Signal amplification using colloidal gold in a biolayer interferometry-based immunosensor for the mycotoxin deoxynivalenol. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22489824
Wu W et al. Comparison of murine anorectic responses to the 8-ketotrichothecenes 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenon X and nivalenol. 2012 Food Chem. Toxicol. pmid:22465835
Wang X et al. JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. 2012 Toxicol. Sci. pmid:22454431
Lin X et al. [Development of in vitro digestion model for assessing the bioaccessibility of deoxynivalenol derived from foods]. 2012 Wei Sheng Yan Jiu pmid:22443053
Dietrich B et al. Fusarium mycotoxin-contaminated wheat containing deoxynivalenol alters the gene expression in the liver and the jejunum of broilers. 2012 Animal pmid:22436186
Warth B et al. Assessment of human deoxynivalenol exposure using an LC-MS/MS based biomarker method. 2012 Toxicol. Lett. pmid:22429874
Oliveira PM et al. Fundamental study on the influence of Fusarium infection on quality and ultrastructure of barley malt. 2012 Int. J. Food Microbiol. pmid:22424933
Talas F et al. Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight. 2012 BMC Genet. pmid:22409447
Yunus AW et al. Deoxynivalenol as a contaminant of broiler feed: intestinal development, absorptive functionality, and metabolism of the mycotoxin. 2012 Poult. Sci. pmid:22399724
Yunus AW et al. Deoxynivalenol as a contaminant of broiler feed: effects on bird performance and response to common vaccines. 2012 Poult. Sci. pmid:22399723
Ghareeb K et al. Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. 2012 Poult. Sci. pmid:22399717
Selwet M Maize plants infestation by Fusarium spp. and deoxynivalenol in genetically modified corn hybrid and traditional maize cultivars. 2011 Pol. J. Microbiol. pmid:22390066
Qi PF et al. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. 2012 Fungal Biol pmid:22385623
Piekkola S et al. Characterisation of aflatoxin and deoxynivalenol exposure among pregnant Egyptian women. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22376138
Zhu FX et al. [Enhancing effect of deoxynivalenol-mediated GRP78 down-regulation on heavy chain secretion and bioactivity of two-chain FVIII gene co-transfected cells]. 2011 Yao Xue Xue Bao pmid:22375418
De Boevre M et al. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22369426
Vujanovic V et al. Heat- and cold-shock responses in Fusarium graminearum 3 acetyl- and 15 acetyl-deoxynivalenol chemotypes. 2012 J. Microbiol. pmid:22367943
Wang Y et al. Simultaneous and rapid detection of six different mycotoxins using an immunochip. 2012 Biosens Bioelectron pmid:22341860
Awad WA et al. Genotoxic effects of deoxynivalenol in broiler chickens fed low-protein feeds. 2012 Poult. Sci. pmid:22334729
Ito M et al. A novel actinomycete derived from wheat heads degrades deoxynivalenol in the grain of wheat and barley affected by Fusarium head blight. 2012 Appl. Microbiol. Biotechnol. pmid:22322873
Almeida MI et al. Co-occurrence of aflatoxins B₁, B₂, G₁ and G₂, ochratoxin A, zearalenone, deoxynivalenol, and citreoviridin in rice in Brazil. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22316345
Lindblad M et al. Statistical analysis of agronomical factors and weather conditions influencing deoxynivalenol levels in oats in Scandinavia. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22296582
Lee J et al. Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. 2012 Appl. Environ. Microbiol. pmid:22287004
Bensassi F et al. Involvement of mitochondria-mediated apoptosis in deoxynivalenol cytotoxicity. 2012 Food Chem. Toxicol. pmid:22281158
Ma Y et al. A mitochondria-mediated apoptotic pathway induced by deoxynivalenol in human colon cancer cells. 2012 Toxicol In Vitro pmid:22269384
Numanoglu E et al. Thermal degradation of deoxynivalenol during maize bread baking. 2012 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:22264215