Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
pmid:24660841
Choi HJ et al. Postharvest strategies for deoxynivalenol and zearalenone reduction in stored adlay (Coix lachryma-jobi L.) grains. 2014 J. Food Prot. pmid:24674439
Ji F et al. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. 2014 Food Chem pmid:24679796
Bensassi F et al. In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. 2014 Toxicon pmid:24680766
Yu F et al. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. 2014 New Phytol. pmid:24684168
Martinez M et al. [Fusarium graminearum presence in wheat samples for human consumption]. 2014 Jan-Mar Rev. Argent. Microbiol. pmid:24721273
pmid:24723164
Moretti A et al. Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol. 2014 Toxins (Basel) pmid:24727554
Matejova I et al. The effect of mycotoxin deoxynivalenol on haematological and biochemical indicators and histopathological changes in rainbow trout (Oncorhynchus mykiss). 2014 Biomed Res Int pmid:24729967
pmid:24735088
Song S et al. Multiplex lateral flow immunoassay for mycotoxin determination. 2014 Anal. Chem. pmid:24745689
Sella L et al. Fusarium graminearum Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity. 2014 Phytopathology pmid:24779355
González-Osnaya L and Farrés A Deoxynivalenol and zearalenone in Fusarium-contaminated wheat in Mexico City. 2011 Food Addit Contam Part B Surveill pmid:24779666
pmid:24779779
Tutelyan VA et al. Fusariotoxins in Russian Federation 2005-2010 grain harvests. 2013 Food Addit Contam Part B Surveill pmid:24779881
Jajić I et al. Incidence of deoxynivalenol in Serbian wheat and barley. 2014 J. Food Prot. pmid:24780345
Driehuis F et al. Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. 2008 Food Addit Contam Part B Surveill pmid:24784536
Marques MF et al. Co-occurrence of deoxynivalenol and zearalenone in crops marketed in Portugal. 2008 Food Addit Contam Part B Surveill pmid:24784809
pmid:24785178
pmid:24785179
pmid:24785315
pmid:24785724
pmid:24786008
Wu W et al. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. 2014 Toxicol. Appl. Pharmacol. pmid:24793808
pmid:24823938
Bertuzzi T et al. Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009-2011. 2014 Food Addit Contam Part B Surveill pmid:24848161
Pinton P and Oswald IP Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. 2014 Toxins (Basel) pmid:24859243
pmid:24888376
pmid:24894432
pmid:24903010
pmid:24909776
Kaushik G Effect of processing on mycotoxin content in grains. 2015 Crit Rev Food Sci Nutr pmid:24915313
Brezina U et al. Development of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of zearalenone, deoxynivalenol and their metabolites in pig serum. 2014 Mycotoxin Res pmid:24925826
pmid:24927789
Mishra S et al. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway. 2014 Toxicol. Appl. Pharmacol. pmid:24937323
Hu W et al. Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum. 2014 Phytopathology pmid:24941327
pmid:24948114
pmid:24952344
pmid:24973883
Burger HM et al. Development and evaluation of a sensitive mycotoxin risk assessment model (MYCORAM). 2014 Toxicol. Sci. pmid:24980263
Wu M et al. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol. 2014 PLoS ONE pmid:24984001
pmid:24988111
pmid:24998314
pmid:25010452
Awad WA et al. Mechanisms underlying the inhibitory effect of the feed contaminant deoxynivalenol on glucose absorption in broiler chickens. 2014 Vet. J. pmid:25011710
Zielonka Ł et al. The effect of environmental mycotoxins on selected ovarian tissue fragments of multiparous female wild boars at the beginning of astronomical winter. 2014 Toxicon pmid:25016169
Piotrowska M et al. The effect of experimental fusarium mycotoxicosis on microbiota diversity in porcine ascending colon contents. 2014 Toxins (Basel) pmid:25025709
pmid:25029398
pmid:25029408
pmid:25033990