Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Fornelli F et al. Cytotoxicity induced by nivalenol, deoxynivalenol, and fumonisin B1 in the SF-9 insect cell line. 2004 May-Jun In Vitro Cell. Dev. Biol. Anim. pmid:15479121
Yoshizawa T et al. A practical method for measuring deoxynivalenol, nivalenol, and T-2 + HT-2 toxin in foods by an enzyme-linked immunosorbent assay using monoclonal antibodies. 2004 Biosci. Biotechnol. Biochem. pmid:15502352
Trichothecenes with a special focus on DON. Proceedings of a workshop. September 10-12, 2003. Dublin Ireland. 2004 Toxicol. Lett. pmid:15510395
Jia Q et al. Docosahexaenoic acid attenuates mycotoxin-induced immunoglobulin a nephropathy, interleukin-6 transcription, and mitogen-activated protein kinase phosphorylation in mice. 2004 J. Nutr. pmid:15570035
Döll S et al. In vitro studies on the evaluation of mycotoxin detoxifying agents for their efficacy on deoxynivalenol and zearalenone. 2004 Arch Anim Nutr pmid:15570745
Pestka JJ et al. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. 2005 Toxicology pmid:15588914
Döll S et al. The effect of increasing concentrations of Fusarium toxins in piglet diets on histological parameters of the uterus and vagina. 2004 Arch Anim Nutr pmid:15595624
Awad WA et al. Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. 2004 Poult. Sci. pmid:15615008
Kinser S et al. Truncated deoxynivalenol-induced splenic immediate early gene response in mice consuming (n-3) polyunsaturated fatty acids. 2005 J. Nutr. Biochem. pmid:15681167
Li HP et al. Development of a generic PCR detection of deoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum. 2005 FEMS Microbiol. Lett. pmid:15686855
Beyer M et al. Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production. 2005 Int. J. Food Microbiol. pmid:15698684
Sprando RL et al. Characterization of the effect of deoxynivalenol on selected male reproductive endpoints. 2005 Food Chem. Toxicol. pmid:15721211
Dänicke S et al. Effects of long-term storage on Fusarium toxin concentrations in wheat--sources of error of the analytical results. 2004 Arch Anim Nutr pmid:15732583
Huang XH et al. [Carcinogenic effects of sterigmatocystin and deoxynivalenol in NIH mice]. 2004 Zhonghua Zhong Liu Za Zhi pmid:15733384
Pettersson H and Kiessling KH Mycotoxins in Swedish grains and mixed feeds. 1992 Mar-Apr J. Environ. Pathol. Toxicol. Oncol. pmid:1573563
Hope R et al. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. 2005 Lett. Appl. Microbiol. pmid:15752221
Pestka JJ and Smolinski AT Deoxynivalenol: toxicology and potential effects on humans. 2005 Jan-Feb J Toxicol Environ Health B Crit Rev pmid:15762554
Li YH et al. [The inhibitory effect of deoxynivalenol on TAP-1 expression in human peripheral blood mononuclear cells in vitro]. 2005 Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi pmid:15766417
Zhou HR et al. Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. 2005 Toxicol. Sci. pmid:15772366
Jia Q and Pestka JJ Role of cyclooxygenase-2 in deoxynivalenol-induced immunoglobulin a nephropathy. 2005 Food Chem. Toxicol. pmid:15778012
Cetin Y and Bullerman LB Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. 2005 Food Chem. Toxicol. pmid:15778016
Berthiller F et al. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. 2005 J. Agric. Food Chem. pmid:15853382
Calvert TW et al. Comparison of in vitro cytotoxicity of Fusarium mycotoxins,deoxynivalenol, T-2 toxin and zearalenone on selected human epithelial cell lines. 2005 Mycopathologia pmid:15883728
Le Dréan G et al. Myelotoxicity of trichothecenes and apoptosis: an in vitro study on human cord blood CD34+ hematopoietic progenitor. 2005 Toxicol In Vitro pmid:15908172
Valenta H and Dänicke S Study on the transmission of deoxynivalenol and de-epoxy-deoxynivalenol into eggs of laying hens using a high-performance liquid chromatography-ultraviolet method with clean-up by immunoaffinity columns. 2005 Mol Nutr Food Res pmid:15937997
Takayama H et al. Suppressive effect of deoxynivalenol, a Fusarium mycotoxin, on bovine and porcine neutrophil chemiluminescence: an in vitro study. 2005 J. Vet. Med. Sci. pmid:15942140
Li M et al. Modulation of murine host response to enteric reovirus infection by the trichothecene deoxynivalenol. 2005 Toxicol. Sci. pmid:15958657
Le Bail M et al. Simulation of consumer exposure to deoxynivalenol according to wheat crop management and grain segregation: case studies and methodological considerations. 2005 Regul. Toxicol. Pharmacol. pmid:15964117
Awad WA et al. In vitro effects of deoxynivalenol on electrical properties of intestinal mucosa of laying hens. 2005 Poult. Sci. pmid:15971531
Awad WA et al. Effects of luminal deoxynivalenol and L-proline on electrophysiological parameters in the jejunums of laying hens. 2005 Poult. Sci. pmid:15971532
Zhou HR et al. Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol. 2005 Toxicol. Sci. pmid:15976193
Islam Z and Pestka JJ LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. 2006 Toxicol. Appl. Pharmacol. pmid:16009389
Kouadio JH et al. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. 2005 Toxicology pmid:16019124
Biancardi A et al. A rapid multiresidual determination of type A and type B trichothecenes in wheat flour by HPLC-ESI-MS. 2005 Food Addit Contam pmid:16019793
Rossi F et al. Effect of Bt corn on broiler growth performance and fate of feed-derived DNA in the digestive tract. 2005 Poult. Sci. pmid:16050119
Goyarts T et al. On the effects of a chronic deoxynivalenol intoxication on performance, haematological and serum parameters of pigs when diets are offered either for ad libitum consumption or fed restrictively. 2005 J Vet Med A Physiol Pathol Clin Med pmid:16050913
Holloway AC et al. DDE-induced changes in aromatase activity in endometrial stromal cells in culture. 2005 Endocrine pmid:16077170
Wollenhaupt K et al. In vitro and in vivo effects of deoxynivalenol (DNV) on regulators of cap dependent translation control in porcine endometrium. 2006 Reprod. Toxicol. pmid:16099139
Liu Y et al. Solvolysis procedures for the determination of bound residues of the mycotoxin deoxynivalenol in fusarium species infected grain of two winter wheat cultivars preinfected with barley yellow dwarf virus. 2005 J. Agric. Food Chem. pmid:16104812
Koshinsky HA and Khachatourians GG Bioassay for deoxynivalenol based on the interaction of T-2 toxin with trichothecene mycotoxins. 1992 Bull Environ Contam Toxicol pmid:1611247
Schneweis I et al. Influence of organically or conventionally produced wheat on health, performance and mycotoxin residues in tissues and bile of growing pigs. 2005 Arch Anim Nutr pmid:16119076
Di R and Tumer NE Expression of a truncated form of ribosomal protein L3 confers resistance to pokeweed antiviral protein and the Fusarium mycotoxin deoxynivalenol. 2005 Mol. Plant Microbe Interact. pmid:16134888
Dänicke S et al. Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. 2005 J Anim Physiol Anim Nutr (Berl) pmid:16138860
Döll S et al. The efficacy of a modified aluminosilicate as a detoxifying agent in Fusarium toxin contaminated maize containing diets for piglets. 2005 J Anim Physiol Anim Nutr (Berl) pmid:16138865
MacDonald SJ et al. Determination of deoxynivalenol in cereals and cereal products by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. 2005 Jul-Aug J AOAC Int pmid:16152940
Dänicke S et al. On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone. 2005 Mol Nutr Food Res pmid:16189795
Gouze ME et al. Effect of various doses of deoxynivalenol on liver xenobiotic metabolizing enzymes in mice. 2006 Food Chem. Toxicol. pmid:16209902
Bretz M et al. Synthesis of stable isotope labeled 3-acetyldeoxynivalenol. 2005 Mol Nutr Food Res pmid:16229052
Ramirez ML et al. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. 2006 Int. J. Food Microbiol. pmid:16236377
Abramson D et al. Reduction of deoxynivalenol in barley by treatment with aqueous sodium carbonate and heat. 2005 Mycopathologia pmid:16244898
Tognon G et al. Implementation of the electronic nose for the identification of mycotoxins in durum wheat (Triticum durum). 2005 Vet. Res. Commun. pmid:16245002
Dyer RB et al. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. 2005 J. Agric. Food Chem. pmid:16277434
Seeling K et al. On the effects of Fusarium toxin contaminated wheat and wheat chaff on nutrient utilisation and turnover of deoxynivalenol and zearalenone in vitro (Rusitec). 2006 Toxicol In Vitro pmid:16321500
Collins TF et al. Effects of deoxynivalenol (DON, vomitoxin) on in utero development in rats. 2006 Food Chem. Toxicol. pmid:16325976
Goyarts T and Dänicke S Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. 2006 Toxicol. Lett. pmid:16326049
Miedaner T et al. Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. 2006 Theor. Appl. Genet. pmid:16362277
Häubl G et al. Suitability of a fully 13C isotope labeled internal standard for the determination of the mycotoxin deoxynivalenol by LC-MS/MS without clean up. 2006 Anal Bioanal Chem pmid:16362816
Islam Z et al. p38 Mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes. 2006 Toxicol. Appl. Pharmacol. pmid:16364386
Gouze ME et al. Individual and combined effects of low oral doses of deoxynivalenol and nivalenol in mice. 2005 Cell. Mol. Biol. (Noisy-le-grand) pmid:16375817
Naef A et al. A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. 2006 FEMS Microbiol. Ecol. pmid:16420629
Awad WA et al. Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. 2006 J Anim Physiol Anim Nutr (Berl) pmid:16422767
Jia Q et al. Docosahexaenoic acid consumption inhibits deoxynivalenol-induced CREB/ATF1 activation and IL-6 gene transcription in mouse macrophages. 2006 J. Nutr. pmid:16424113
Alm H et al. Influence of Fusarium-toxin contaminated feed on initial quality and meiotic competence of gilt oocytes. 2006 Reprod. Toxicol. pmid:16431077
Sergent T et al. Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. 2006 Toxicol. Lett. pmid:16442754
Nasri T et al. Differential induction of apoptosis by type A and B trichothecenes in Jurkat T-lymphocytes. 2006 Toxicol In Vitro pmid:16472964
Lemmens M et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. 2005 Mol. Plant Microbe Interact. pmid:16478051
Havlová P et al. The effect of fungicidal treatment on selected quality parameters of barley and malt. 2006 J. Agric. Food Chem. pmid:16478260
Goyarts T et al. Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes. 2006 Toxicol In Vitro pmid:16480848
Cetin Y and Bullerman LB Confirmation of reduced toxicity of deoxynivalenol in extrusion-processed corn grits by the MTT bioassay. 2006 J. Agric. Food Chem. pmid:16506858
Hymery N et al. In vitro effects of trichothecenes on human dendritic cells. 2006 Toxicol In Vitro pmid:16517116
Seeling K et al. Effects of level of feed intake and Fusarium toxin-contaminated wheat on rumen fermentation as well as on blood and milk parameters in cows. 2006 J Anim Physiol Anim Nutr (Berl) pmid:16519755
Bretz M et al. Stable isotope dilution analysis of the Fusarium mycotoxins deoxynivalenol and 3-acetyldeoxynivalenol. 2006 Mol Nutr Food Res pmid:16521158
Shi Y and Pestka JJ Attenuation of mycotoxin-induced IgA nephropathy by eicosapentaenoic acid in the mouse: dose response and relation to IL-6 expression. 2006 J. Nutr. Biochem. pmid:16524712
Sugita-Konsihi Y et al. Validation of an HPLC analytical method coupled to a multifunctional clean-up column for the determination of deoxynivalenol. 2006 Mycopathologia pmid:16552488
Tiemann U et al. Influence of diets with cereal grains contaminated by graded levels of two Fusarium toxins on selected enzymatic and histological parameters of liver in gilts. 2006 Food Chem. Toxicol. pmid:16580769
Engelhardt G et al. Fusarium mycotoxins and ochratoxin A in cereals and cereal products: results from the Bavarian Health and Food Safety Authority in 2004. 2006 Mol Nutr Food Res pmid:16598807
Boddu J et al. Transcriptome analysis of the barley-Fusarium graminearum interaction. 2006 Mol. Plant Microbe Interact. pmid:16610744
Ponts N et al. Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. 2006 FEMS Microbiol. Lett. pmid:16630263
Ngundi MM et al. Detection of deoxynivalenol in foods and indoor air using an array biosensor. 2006 Environ. Sci. Technol. pmid:16646473
Brinkmeyer U et al. Influence of a Fusarium culmorum inoculation of wheat on the progression of mycotoxin accumulation, ingredient concentrations and ruminal in sacco dry matter degradation of wheat residues. 2006 Arch Anim Nutr pmid:16649577
Malir F et al. Monitoring the mycotoxins in food and their biomarkers in the Czech Republic. 2006 Mol Nutr Food Res pmid:16676375
Hajjaji A et al. Occurrence of mycotoxins (ochratoxin A, deoxynivalenol) and toxigenic fungi in Moroccan wheat grains: impact of ecological factors on the growth and ochratoxin A production. 2006 Mol Nutr Food Res pmid:16676377
Quarta A et al. Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. 2006 FEMS Microbiol. Lett. pmid:16684095
Pestka J and Zhou HR Toll-like receptor priming sensitizes macrophages to proinflammatory cytokine gene induction by deoxynivalenol and other toxicants. 2006 Toxicol. Sci. pmid:16687389
Ivanova L et al. Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. 2006 Toxicon pmid:16730043
Naef A et al. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. 2006 Jul-Aug J. Environ. Qual. pmid:16738384
Accensi F et al. Ingestion of low doses of deoxynivalenol does not affect hematological, biochemical, or immune responses of piglets. 2006 J. Anim. Sci. pmid:16775078
Awad WA et al. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. 2006 Poult. Sci. pmid:16776464
Kottapalli B et al. Effect of electron-beam irradiation on the safety and quality of Fusarium-infected malting barley. 2006 Int. J. Food Microbiol. pmid:16780979
Mbandi E and Pestka JJ Deoxynivalenol and satratoxin G potentiate proinflammatory cytokine and macrophage inhibitory protein 2 induction by Listeria and Salmonella in the macrophage. 2006 J. Food Prot. pmid:16786854
Maragos C et al. Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol. 2006 Food Addit Contam pmid:16807207
Dänicke S et al. Effects of the Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs. 2006 Toxicol. Lett. pmid:16814494
Bony S et al. Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the Comet assay. 2006 Toxicol. Lett. pmid:16828243
Ayalew A et al. Natural occurrence of mycotoxins in staple cereals from Ethiopia. 2006 Mycopathologia pmid:16830193
Blechová P et al. New possibilities of matrix-assisted laser desorption ionization time of flight mass spectrometry to analyze barley malt quality. Highly sensitive detection of mycotoxins. 2006 Environ. Toxicol. pmid:16841326
Sugita-Konishi Y et al. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products. 2006 Biosci. Biotechnol. Biochem. pmid:16861811
Frankic T et al. The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes. 2006 Food Chem. Toxicol. pmid:16875771
Anselme M et al. Comparison of ochratoxin A and deoxynivalenol in organically and conventionally produced beers sold on the Belgian market. 2006 Food Addit Contam pmid:16901860
Díaz-Llano G and Smith TK Effects of feeding grains naturally contaminated with Fusarium mycotoxins with and without a polymeric glucomannan mycotoxin adsorbent on reproductive performance and serum chemistry of pregnant gilts. 2006 J. Anim. Sci. pmid:16908638
Bretz M et al. Thermal degradation of the Fusarium mycotoxin deoxynivalenol. 2006 J. Agric. Food Chem. pmid:16910743