Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Acne Vulgaris D000152 35 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adenoma D000236 40 associated lipids
Anaphylaxis D000707 35 associated lipids
Anemia D000740 21 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Fabry Disease D000795 4 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Roviezzo F et al. Disodium cromoglycate inhibits asthma-like features induced by sphingosine-1-phosphate. 2016 Pharmacol. Res. pmid:27713021
Yang Z et al. TGR5 activation suppressed S1P/S1P2 signaling and resisted high glucose-induced fibrosis in glomerular mesangial cells. 2016 Pharmacol. Res. pmid:27317945
Ghasemi R et al. Integrated sphingosine-1 phosphate signaling in the central nervous system: From physiological equilibrium to pathological damage. 2016 Pharmacol. Res. pmid:26772814
Nigro E et al. Role of adiponectin in sphingosine-1-phosphate induced airway hyperresponsiveness and inflammation. 2016 Pharmacol. Res. pmid:26462929
Chiba Y et al. Downregulation of sphingosine-1-phosphate receptors in bronchial smooth muscle of mouse experimental asthma. 2010 Pharmacol. Res. pmid:20554039
Takabe K et al. "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. 2008 Pharmacol. Rev. pmid:18552276
Ebenezer DL et al. Targeting sphingosine-1-phosphate signaling in lung diseases. 2016 Pharmacol. Ther. pmid:27621206
Pyne S and Pyne N Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. 2000 Pharmacol. Ther. pmid:11150592
Edmonds Y et al. Development of small-molecule inhibitors of sphingosine-1-phosphate signaling. 2011 Pharmacol. Ther. pmid:21906625
Oskeritzian CA et al. Sphingosine-1-phosphate in allergic responses, asthma and anaphylaxis. 2007 Pharmacol. Ther. pmid:17669501
Nakagawa Y and Chiba K Diversity and plasticity of microglial cells in psychiatric and neurological disorders. 2015 Pharmacol. Ther. pmid:26129625
Sauer B et al. Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. 2005 Pharmazie pmid:15881612
Korbelik M et al. Monitoring ceramide and sphingosine-1-phosphate levels in cancer cells and macrophages from tumours treated by photodynamic therapy. 2012 Photochem. Photobiol. Sci. pmid:22354109
Zhao CG et al. Sphingosine-1-phosphate is a possible fibrogenic factor in gluteal muscle fibrosis. 2013 Physiol Res pmid:23869887
Madhunapantula SV et al. Targeting sphingosine kinase-1 to inhibit melanoma. 2012 Pigment Cell Melanoma Res pmid:22236408
Kerage D et al. Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. 2014 Placenta pmid:24411702
Brünnert D et al. Sphingosine 1-phosphate regulates IL-8 expression and secretion via S1PR1 and S1PR2 receptors-mediated signaling in extravillous trophoblast derived HTR-8/SVneo cells. 2015 Placenta pmid:26321412
Erkhembaatar LO et al. Increased expression of sphingosine kinase in the amnion during labor. 2013 Placenta pmid:23462226
Pandey S and Assmann SM The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. 2004 Plant Cell pmid:15155892
Worrall D et al. Involvement of sphingosine kinase in plant cell signalling. 2008 Plant J. pmid:18557834
Michaelson LV et al. Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. 2009 Plant Physiol. pmid:18978071
Puli MR et al. Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. 2016 Planta pmid:27233507
Vito CD et al. Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications. 2016 Platelets pmid:26950429
Nugent D and Xu Y Sphingosine-1-phosphate: characterization of its inhibition of platelet aggregation. 2000 Platelets pmid:10938902
Kempf A et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. 2014 PLoS Biol. pmid:24453941
Serafimidis I et al. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling. 2017 PLoS Biol. pmid:28248965
Yuan S et al. Lipid receptor S1P₁ activation scheme concluded from microsecond all-atom molecular dynamics simulations. 2013 PLoS Comput. Biol. pmid:24098103
Walls SM et al. Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. 2013 PLoS Genet. pmid:24339790
Chen J et al. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. 2014 PLoS Genet. pmid:25356849
Wang K et al. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. 2015 PLoS Genet. pmid:26474409
Lepletier A et al. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease. 2014 PLoS Negl Trop Dis pmid:25330249
Williams PA et al. Hypoxia augments outgrowth endothelial cell (OEC) sprouting and directed migration in response to sphingosine-1-phosphate (S1P). 2015 PLoS ONE pmid:25875493
Soltau I et al. Serum-Sphingosine-1-Phosphate Concentrations Are Inversely Associated with Atherosclerotic Diseases in Humans. 2016 PLoS ONE pmid:27973607
Abdel Hadi L et al. Sphingosine Kinase 2 and Ceramide Transport as Key Targets of the Natural Flavonoid Luteolin to Induce Apoptosis in Colon Cancer Cells. 2015 PLoS ONE pmid:26580959
Breslin JW et al. Involvement of local lamellipodia in endothelial barrier function. 2015 PLoS ONE pmid:25658915
Bot M et al. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice. 2013 PLoS ONE pmid:23700419
Zhong Y et al. Nephrokeli, a Chinese herbal formula, may improve IgA nephropathy through regulation of the sphingosine-1-phosphate pathway. 2015 PLoS ONE pmid:25633986
Gomes L et al. Sphingosine 1-phosphate in acute dengue infection. 2014 PLoS ONE pmid:25409037
Bachmaier K et al. Sphingosine kinase 1 mediation of expression of the anaphylatoxin receptor C5L2 dampens the inflammatory response to endotoxin. 2012 PLoS ONE pmid:22355325
Huwiler A et al. A prokaryotic S1P lyase degrades extracellular S1P in vitro and in vivo: implication for treating hyperproliferative disorders. 2011 PLoS ONE pmid:21829623
Kujjo LL et al. Chemotherapy-induced late transgenerational effects in mice. 2011 PLoS ONE pmid:21437292
Messias CV et al. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. 2016 PLoS ONE pmid:26824863
O'Sullivan MJ et al. Sphingosine 1-phosphate (S1P) induced interleukin-8 (IL-8) release is mediated by S1P receptor 2 and nuclear factor κB in BEAS-2B cells. 2014 PLoS ONE pmid:24743449
Yasuo M et al. Fenretinide causes emphysema, which is prevented by sphingosine 1-phoshate. 2013 PLoS ONE pmid:23326540
Punsawad C and Viriyavejakul P Reduction in serum sphingosine 1-phosphate concentration in malaria. 2017 PLoS ONE pmid:28666023
Lim M et al. The role of sphingosine kinase 1/sphingosine-1-phosphate pathway in the myogenic tone of posterior cerebral arteries. 2012 PLoS ONE pmid:22532844
Jongsma M et al. LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. 2011 PLoS ONE pmid:22195035
Soleimani R et al. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. 2011 PLoS ONE pmid:21559342
Malik FA et al. Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity. 2015 PLoS ONE pmid:26079370
Valverde O et al. GPR3 receptor, a novel actor in the emotional-like responses. 2009 PLoS ONE pmid:19259266