Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Acne Vulgaris D000152 35 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adenoma D000236 40 associated lipids
Anaphylaxis D000707 35 associated lipids
Anemia D000740 21 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Fabry Disease D000795 4 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Fu P et al. Role of Sphingosine Kinase 1 and S1P Transporter Spns2 in HGF-mediated Lamellipodia Formation in Lung Endothelium. 2016 J. Biol. Chem. pmid:27864331
Morillon YM et al. Antibody Binding to CD4 Induces Rac GTPase Activation and Alters T Cell Migration. 2016 J. Immunol. pmid:27694496
Lepannetier S et al. Sphingosine-1-phosphate-activated TRPC1 channel controls chemotaxis of glioblastoma cells. 2016 Cell Calcium pmid:27638096
Kemppainen K et al. Sphingosylphosphorylcholine regulates the Hippo signaling pathway in a dual manner. 2016 Cell. Signal. pmid:27634386
Sanagawa A et al. Sphingosine 1‑phosphate induced by hypoxia increases the expression of PAI‑1 in HepG2 cells via HIF‑1α. 2016 Mol Med Rep pmid:27357063
Tiper IV et al. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. 2016 Pathog Dis pmid:27354294
Jung M et al. Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. 2016 Sci Signal pmid:27353364
Rodvold JJ and Zanetti M Tumor microenvironment on the move and the Aselli connection. 2016 Sci Signal pmid:27353363
Harijith A et al. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium. 2016 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:27343196
Guo J et al. Identification and synthesis of potent and selective pyridyl-isoxazole based agonists of sphingosine-1-phosphate 1 (S1P1). 2016 Bioorg. Med. Chem. Lett. pmid:27055941
Adams DR et al. Sphingosine Kinases: Emerging Structure-Function Insights. 2016 Trends Biochem. Sci. pmid:27021309
Lv M et al. Sphingosine kinase 1/sphingosine-1-phosphate regulates the expression of interleukin-17A in activated microglia in cerebral ischemia/reperfusion. 2016 Inflamm. Res. pmid:27002656
Wang H et al. Potential serum biomarkers from a metabolomics study of autism. 2016 J Psychiatry Neurosci pmid:26395811
Frej C et al. Sphingosine 1-phosphate and its carrier apolipoprotein M in human sepsis and in Escherichia coli sepsis in baboons. 2016 J. Cell. Mol. Med. pmid:26990127
Farez MF and Correale J Sphingosine 1-phosphate signaling in astrocytes: Implications for progressive multiple sclerosis. 2016 J. Neurol. Sci. pmid:26810518
Santos-Cortez RL et al. Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2. 2016 Am. J. Hum. Genet. pmid:26805784
Bock S et al. Sphingosine 1-phospate differentially modulates maturation and function of human Langerhans-like cells. 2016 J. Dermatol. Sci. pmid:26803226
Marycz K et al. The influence of metal-based biomaterials functionalized with sphingosine-1-phosphate on the cellular response and osteogenic differentaion potenial of human adipose derived mesenchymal stem cells in vitro. 2016 J Biomater Appl pmid:26801473
Tran HB et al. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720. 2016 J. Leukoc. Biol. pmid:26792820
Chapurlat RD and Confavreux CB Novel biological markers of bone: from bone metabolism to bone physiology. 2016 Rheumatology (Oxford) pmid:26790456
Realini N et al. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. 2016 J. Biol. Chem. pmid:26553872
Cheng JC et al. Sphingosine-1-phosphate induces COX-2 expression and PGE2 production in human granulosa cells through a S1P1/3-mediated YAP signaling. 2016 Cell. Signal. pmid:26994820
Ratajczak MZ and Suszynska M Emerging Strategies to Enhance Homing and Engraftment of Hematopoietic Stem Cells. 2016 Stem Cell Rev pmid:26400757
Yaghobian D et al. Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy. 2016 Clin. Exp. Pharmacol. Physiol. pmid:26414003
Setoguchi R IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. 2016 Int. Immunol. pmid:26857736
Kim BJ et al. The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient. 2016 J. Endocrinol. Invest. pmid:26219613
Touat-Hamici Z et al. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function. 2016 Cardiovasc. Res. pmid:27694435
Medina CB and Ravichandran KS Do not let death do us part: 'find-me' signals in communication between dying cells and the phagocytes. 2016 Cell Death Differ. pmid:26891690
Lee SY et al. Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. 2015 Hepatology pmid:25808625
Salama MF et al. A novel role of sphingosine kinase-1 in the invasion and angiogenesis of VHL mutant clear cell renal cell carcinoma. 2015 FASEB J. pmid:25805832
Potì F et al. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet. 2015 Atherosclerosis pmid:25801013
Castillo-Badillo JA et al. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. 2015 PLoS ONE pmid:25799564
Chavez A et al. S1PR1 Tyr143 phosphorylation downregulates endothelial cell surface S1PR1 expression and responsiveness. 2015 J. Cell. Sci. pmid:25588843
Woszczek G and Fuerst E Ca2+ mobilization assays in GPCR drug discovery. 2015 Methods Mol. Biol. pmid:25563178
Li Q et al. Differential activation of receptors and signal pathways upon stimulation by different doses of sphingosine-1-phosphate in endothelial cells. 2015 Exp. Physiol. pmid:25557733
Moon MH et al. Activation of S1P2 receptor, a possible mechanism of inhibition of adipogenic differentiation by sphingosine 1‑phosphate. 2015 Mol Med Rep pmid:25351259
Zhang T et al. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. 2015 Chem. Biol. Interact. pmid:25557508
Wang Z et al. Decreased Splenic CD4(+) T-Lymphocytes in Apolipoprotein M Gene Deficient Mice. 2015 Biomed Res Int pmid:26543853
Yu H et al. Effect of sphingosine-1-phosphate and myoblast transplantation on rat acute myocardial infarction. 2015 Genet. Mol. Res. pmid:26535699
Frej C et al. Quantification of sphingosine 1-phosphate by validated LC-MS/MS method revealing strong correlation with apolipoprotein M in plasma but not in serum due to platelet activation during blood coagulation. 2015 Anal Bioanal Chem pmid:26377937
Klyachkin YM et al. Pharmacological Elevation of Circulating Bioactive Phosphosphingolipids Enhances Myocardial Recovery After Acute Infarction. 2015 Stem Cells Transl Med pmid:26371341
Zeng Y et al. Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. 2015 Exp. Cell Res. pmid:26364737
Manes NP et al. Targeted Proteomics-Driven Computational Modeling of Macrophage S1P Chemosensing. 2015 Mol. Cell Proteomics pmid:26199343
Spampinato SF et al. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli? 2015 PLoS ONE pmid:26197437
Airola MV et al. Structural Basis for Ceramide Recognition and Hydrolysis by Human Neutral Ceramidase. 2015 Structure pmid:26190575
Vettorazzi S et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. 2015 Nat Commun pmid:26183376
Michels M et al. Decreased plasma levels of the endothelial protective sphingosine-1-phosphate are associated with dengue-induced plasma leakage. 2015 J. Infect. pmid:26183296
Laurenzana A et al. Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts. 2015 J. Mol. Med. pmid:25952146
Rahman MM et al. Secretion of PDGF isoforms during osteoclastogenesis and its modulation by anti-osteoclast drugs. 2015 Biochem. Biophys. Res. Commun. pmid:25951977
Prager B et al. Sphingosine 1-phosphate signaling at the blood-brain barrier. 2015 Trends Mol Med pmid:25939882