Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Lung Neoplasms D008175 171 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Glioma D005910 112 associated lipids
Weight Gain D015430 101 associated lipids
Insulin Resistance D007333 99 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Arteriosclerosis D001161 86 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Atherosclerosis D050197 85 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Leukemia D007938 74 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Coronary Disease D003327 70 associated lipids
Colitis D003092 69 associated lipids
Melanoma D008545 69 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Neuroblastoma D009447 66 associated lipids
Reperfusion Injury D015427 65 associated lipids
Pain D010146 64 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Nerve Degeneration D009410 53 associated lipids
Asthma D001249 52 associated lipids
Psoriasis D011565 47 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hyperalgesia D006930 42 associated lipids
Arthritis D001168 41 associated lipids
Adenoma D000236 40 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Heart Failure D006333 36 associated lipids
Anaphylaxis D000707 35 associated lipids
Acne Vulgaris D000152 35 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Acute Lung Injury D055371 33 associated lipids
Proteinuria D011507 30 associated lipids
Insulinoma D007340 28 associated lipids
Neuralgia D009437 28 associated lipids
Endotoxemia D019446 27 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Glioblastoma D005909 27 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Pulmonary Edema D011654 23 associated lipids
Fibrosis D005355 23 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Hypersensitivity D006967 22 associated lipids
Sarcoma 180 D012510 21 associated lipids
Anemia D000740 21 associated lipids
Tuberculosis D014376 20 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Vascular Diseases D014652 16 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Thrombocytopenia D013921 15 associated lipids
Lung Injury D055370 14 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Influenza, Human D007251 11 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Cardiomyopathies D009202 10 associated lipids
Retinal Detachment D012163 10 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Teratocarcinoma D018243 7 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Eye Abnormalities D005124 7 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Ovarian Diseases D010049 5 associated lipids
Dilatation, Pathologic D004108 5 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Fabry Disease D000795 4 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Ileus D045823 3 associated lipids
Sensation Disorders D012678 2 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Niemann-Pick Disease, Type C D052556 1 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Pyne S and Pyne NJ Sphingosine 1-phosphate signalling in mammalian cells. 2000 Biochem. J. pmid:10880336
Sharma C et al. Inhibition of Ca2+ release channel (ryanodine receptor) activity by sphingolipid bases: mechanism of action. 2000 Chem. Phys. Lipids pmid:10660207
Vasta V et al. Sphingosine 1-phosphate induces arachidonic acid mobilization in A549 human lung adenocarcinoma cells. 2000 Biochim. Biophys. Acta pmid:10601704
An S et al. Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. 2000 J. Biol. Chem. pmid:10617617
Olivera A et al. Assaying sphingosine kinase activity. 2000 Meth. Enzymol. pmid:10563328
Brindley DN et al. Analysis of ceramide 1-phosphate and sphingosine-1-phosphate phosphatase activities. 2000 Meth. Enzymol. pmid:10563330
Im DS et al. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. 2000 J. Biol. Chem. pmid:10799507
Goetzl EJ et al. Cutting edge: differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. 2000 J. Immunol. pmid:10799850
Nava VE et al. Functional characterization of human sphingosine kinase-1. 2000 FEBS Lett. pmid:10802064
Spiegel S and Milstien S Functions of a new family of sphingosine-1-phosphate receptors. 2000 Biochim. Biophys. Acta pmid:10760461
Panetti TS et al. Sphingosine-1-phosphate and lysophosphatidic acid stimulate endothelial cell migration. 2000 Arterioscler. Thromb. Vasc. Biol. pmid:10764666
Boguslawski G et al. Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. 2000 Biochem. Biophys. Res. Commun. pmid:10833459
Kimura T et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. 2000 Biochem. J. pmid:10794715
Van Brocklyn JR et al. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. 2000 Blood pmid:10753843
English D et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. 2000 FASEB J. pmid:11053247
Edsall L et al. Enzymatic method for measurement of sphingosine 1-phosphate. 2000 Meth. Enzymol. pmid:11070858
Sullards MC Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry. 2000 Meth. Enzymol. pmid:11070861
Van Brocklyn JR and Spiegel S Binding of sphingosine 1-phosphate to cell surface receptors. 2000 Meth. Enzymol. pmid:11070888
Yatomi Y et al. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. 2000 Blood pmid:11071638
Fukushima N [A family of lysophospholipid receptors]. 2000 Seikagaku pmid:11076202
Meacci E et al. Permissive role of protein kinase C alpha but not protein kinase C delta in sphingosine 1-phosphate-induced Rho A activation in C2C12 myoblasts. 2000 FEBS Lett. pmid:11018530
Kozawa O et al. Enhancement by sphingosine 1-phosphate in vasopressin-induced phosphoinositide hydrolysis in aortic smooth-muscle cells: involvement of p38 MAP kinase. 2000 J. Cell. Biochem. pmid:11029753
Sato TN A new role of lipid receptors in vascular and cardiac morphogenesis. 2000 J. Clin. Invest. pmid:11032853
Liu Y et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. 2000 J. Clin. Invest. pmid:11032855
Xia P et al. An oncogenic role of sphingosine kinase. 2000 Curr. Biol. pmid:11114522
Young KW et al. Effect of dimethylsphingosine on muscarinic M(3) receptor signalling in SH-SY5Y cells. 2000 Eur. J. Pharmacol. pmid:10940357
Bischoff A et al. Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. 2000 Br. J. Pharmacol. pmid:10952677
Bischoff A et al. Sphingosine-1-phosphate reduces rat renal and mesenteric blood flow in vivo in a pertussis toxin-sensitive manner. 2000 Br. J. Pharmacol. pmid:10952678
Shin Y et al. Diverse effects of sphingosine on calcium mobilization and influx in differentiated HL-60 cells. 2000 Cell Calcium pmid:10859593
Alemany R et al. Stimulation of sphingosine-1-phosphate formation by the P2Y(2) receptor in HL-60 cells: Ca(2+) requirement and implication in receptor-mediated Ca(2+) mobilization, but not MAP kinase activation. 2000 Mol. Pharmacol. pmid:10953041
Young KW et al. Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. 2000 J. Biol. Chem. pmid:10954727
Peyruchaud O and Mosher DF Differential stimulation of signaling pathways initiated by Edg-2 in response to lysophosphatidic acid or sphingosine-1-phosphate. 2000 Cell. Mol. Life Sci. pmid:10961347
Casper RF and Jurisicova A Protecting the female germ line from cancer therapy. 2000 Nat. Med. pmid:11017136
Morita Y et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. 2000 Nat. Med. pmid:11017141
Himmel HM et al. Evidence for Edg-3 receptor-mediated activation of I(K.ACh) by sphingosine-1-phosphate in human atrial cardiomyocytes. 2000 Mol. Pharmacol. pmid:10908314
Driever W Developmental biology. Bringing two hearts together. 2000 Nature pmid:10910341
Kupperman E et al. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. 2000 Nature pmid:10910360
Mandala SM et al. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1- phosphate and induces cell death. 2000 Proc. Natl. Acad. Sci. U.S.A. pmid:10859351
Meacci E et al. Receptor-activated phospholipase D is present in caveolin-3-enriched light membranes of C2C12 myotubes. 2000 FEBS Lett. pmid:10802049
Murata N et al. Quantitative measurement of sphingosine 1-phosphate by radioreceptor-binding assay. 2000 Anal. Biochem. pmid:10860507
Siess W et al. Lysophosphatidic acid and sphingosine 1-phosphate: two lipid villains provoking cardiovascular diseases? 2000 IUBMB Life pmid:10868905
Caligan TB et al. A high-performance liquid chromatographic method to measure sphingosine 1-phosphate and related compounds from sphingosine kinase assays and other biological samples. 2000 Anal. Biochem. pmid:10847608
Igarashi J and Michel T Agonist-modulated targeting of the EDG-1 receptor to plasmalemmal caveolae. eNOS activation by sphingosine 1-phosphate and the role of caveolin-1 in sphingolipid signal transduction. 2000 J. Biol. Chem. pmid:10921915
Racké K et al. Potential role of EDG receptors and lysophospholipids as their endogenous ligands in the respiratory tract. 2000 Pulm Pharmacol Ther pmid:10873548
Sugiyama A et al. Effects of sphingosine 1-phosphate, a naturally occurring biologically active lysophospholipid, on the rat cardiovascular system. 2000 Jpn. J. Pharmacol. pmid:10875754
Spiegel S and Milstien S Sphingosine-1-phosphate: signaling inside and out. 2000 FEBS Lett. pmid:10878250
Kozawa O et al. Sphingosine 1-phosphate amplifies phosphoinositide hydrolysis stimulated by prostaglandin f2 alpha in osteoblasts: involvement of p38MAP kinase. 2000 Prostaglandins Leukot. Essent. Fatty Acids pmid:10913228
Orlati S et al. Sphingosine-1-phosphate activates phospholipase D in human airway epithelial cells via a G protein-coupled receptor. 2000 Arch. Biochem. Biophys. pmid:10683250
Okamoto H et al. Sphingosine 1-phosphate stimulates G(i)- and Rho-mediated vascular endothelial cell spreading and migration. 2000 Thromb. Res. pmid:10942792
Takeshita A et al. Selective stimulation by ceramide of the expression of the alpha isoform of retinoic acid and retinoid X receptors in osteoblastic cells. A role of sphingosine 1-phosphate-mediated AP-1 in the ligand-dependent transcriptional activity of these receptors. 2000 J. Biol. Chem. pmid:10915783