Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Peripheral Arterial Disease D058729 7 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Farber Lipogranulomatosis D055577 1 associated lipids
Acute Lung Injury D055371 33 associated lipids
Lung Injury D055370 14 associated lipids
Niemann-Pick Disease, Type C D052556 1 associated lipids
Atherosclerosis D050197 85 associated lipids
Ileus D045823 3 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Endotoxemia D019446 27 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Teratocarcinoma D018243 7 associated lipids
Weight Gain D015430 101 associated lipids
Reperfusion Injury D015427 65 associated lipids
Vascular Diseases D014652 16 associated lipids
Tuberculosis D014376 20 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Thrombocytopenia D013921 15 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Sensation Disorders D012678 2 associated lipids
Sarcoma 180 D012510 21 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Retinal Detachment D012163 10 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Pulmonary Edema D011654 23 associated lipids
Psoriasis D011565 47 associated lipids
Proteinuria D011507 30 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Pain D010146 64 associated lipids
Ovarian Diseases D010049 5 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Neuroblastoma D009447 66 associated lipids
Neuralgia D009437 28 associated lipids
Nerve Degeneration D009410 53 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Cardiomyopathies D009202 10 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Melanoma D008545 69 associated lipids
Lung Neoplasms D008175 171 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Leukemia D007938 74 associated lipids
Insulinoma D007340 28 associated lipids
Insulin Resistance D007333 99 associated lipids
Influenza, Human D007251 11 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypersensitivity D006967 22 associated lipids
Hyperalgesia D006930 42 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Heart Failure D006333 36 associated lipids
Glioma D005910 112 associated lipids
Glioblastoma D005909 27 associated lipids
Fibrosis D005355 23 associated lipids
Eye Abnormalities D005124 7 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Edema D004487 152 associated lipids
Dilatation, Pathologic D004108 5 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Coronary Disease D003327 70 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Colitis D003092 69 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Asthma D001249 52 associated lipids
Arthritis D001168 41 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Fabry Disease D000795 4 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia D000740 21 associated lipids
Anaphylaxis D000707 35 associated lipids
Adenoma D000236 40 associated lipids
Adenocarcinoma D000230 166 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Pereira JP et al. A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. 2010 PLoS ONE pmid:20174580
Williams PA et al. Hypoxia augments outgrowth endothelial cell (OEC) sprouting and directed migration in response to sphingosine-1-phosphate (S1P). 2015 PLoS ONE pmid:25875493
Bigaud M et al. Pathophysiological Consequences of a Break in S1P1-Dependent Homeostasis of Vascular Permeability Revealed by S1P1 Competitive Antagonism. 2016 PLoS ONE pmid:28005953
Soltau I et al. Serum-Sphingosine-1-Phosphate Concentrations Are Inversely Associated with Atherosclerotic Diseases in Humans. 2016 PLoS ONE pmid:27973607
Castillo-Badillo JA et al. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. 2015 PLoS ONE pmid:25799564
Brulhart-Meynet MC et al. Improving reconstituted HDL composition for efficient post-ischemic reduction of ischemia reperfusion injury. 2015 PLoS ONE pmid:25781943
Abdel Hadi L et al. Sphingosine Kinase 2 and Ceramide Transport as Key Targets of the Natural Flavonoid Luteolin to Induce Apoptosis in Colon Cancer Cells. 2015 PLoS ONE pmid:26580959
Engel N et al. Synergistic Action of Genistein and Calcitriol in Immature Osteosarcoma MG-63 Cells by SGPL1 Up-Regulation. 2017 PLoS ONE pmid:28125641
Hisano Y et al. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. 2012 PLoS ONE pmid:22723910
Breslin JW et al. Involvement of local lamellipodia in endothelial barrier function. 2015 PLoS ONE pmid:25658915
Bot M et al. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice. 2013 PLoS ONE pmid:23700419
Zhong Y et al. Nephrokeli, a Chinese herbal formula, may improve IgA nephropathy through regulation of the sphingosine-1-phosphate pathway. 2015 PLoS ONE pmid:25633986
Berdyshev EV et al. Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase. 2011 PLoS ONE pmid:21304987
Mair N et al. Genetic evidence for involvement of neuronally expressed S1P₁ receptor in nociceptor sensitization and inflammatory pain. 2011 PLoS ONE pmid:21359147
Kotelevets N et al. Targeting sphingosine kinase 1 in carcinoma cells decreases proliferation and survival by compromising PKC activity and cytokinesis. 2012 PLoS ONE pmid:22761740
Yu H et al. Insulin protects apoptotic cardiomyocytes from hypoxia/reoxygenation injury through the sphingosine kinase/sphingosine 1-phosphate axis. 2013 PLoS ONE pmid:24349009
Gomes L et al. Sphingosine 1-phosphate in acute dengue infection. 2014 PLoS ONE pmid:25409037
Vogel P et al. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. 2009 PLoS ONE pmid:19119317
Farahat WA et al. Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures. 2012 PLoS ONE pmid:22662145
Fernández-Pisonero I et al. Synergy between sphingosine 1-phosphate and lipopolysaccharide signaling promotes an inflammatory, angiogenic and osteogenic response in human aortic valve interstitial cells. 2014 PLoS ONE pmid:25275309
Bachmaier K et al. Sphingosine kinase 1 mediation of expression of the anaphylatoxin receptor C5L2 dampens the inflammatory response to endotoxin. 2012 PLoS ONE pmid:22355325
Sassoli C et al. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. 2014 PLoS ONE pmid:25264785
Huwiler A et al. A prokaryotic S1P lyase degrades extracellular S1P in vitro and in vivo: implication for treating hyperproliferative disorders. 2011 PLoS ONE pmid:21829623
Yang W et al. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation. 2014 PLoS ONE pmid:25188412
Liu Q et al. Inhibition of sphingosine kinase-2 suppresses inflammation and attenuates graft injury after liver transplantation in rats. 2012 PLoS ONE pmid:22848628
Beckham TH et al. Acid ceramidase promotes nuclear export of PTEN through sphingosine 1-phosphate mediated Akt signaling. 2013 PLoS ONE pmid:24098536
Mendes-da-Cruz DA et al. Semaphorin 3F and neuropilin-2 control the migration of human T-cell precursors. 2014 PLoS ONE pmid:25068647
Kujjo LL et al. Chemotherapy-induced late transgenerational effects in mice. 2011 PLoS ONE pmid:21437292
Kurano M et al. Involvement of Band3 in the efflux of sphingosine 1-phosphate from erythrocytes. 2017 PLoS ONE pmid:28494002
Messias CV et al. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. 2016 PLoS ONE pmid:26824863
Rahman MM et al. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids. 2014 PLoS ONE pmid:24647471
Riccitelli E et al. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival. 2013 PLoS ONE pmid:23826381
Zhang Y et al. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC) Damages. 2016 PLoS ONE pmid:26788916
O'Sullivan MJ et al. Sphingosine 1-phosphate (S1P) induced interleukin-8 (IL-8) release is mediated by S1P receptor 2 and nuclear factor κB in BEAS-2B cells. 2014 PLoS ONE pmid:24743449
Kondo S et al. Memo has a novel role in S1P signaling and is [corrected] crucial for vascular development. 2014 PLoS ONE pmid:24714781
Al-Jarallah A and Oriowo M The effect of sphingosine-1-phosphate on colonic smooth muscle contractility: Modulation by TNBS-induced colitis. 2017 PLoS ONE pmid:28493876
Oizumi A et al. Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate. 2014 PLoS ONE pmid:24586752
Yasuo M et al. Fenretinide causes emphysema, which is prevented by sphingosine 1-phoshate. 2013 PLoS ONE pmid:23326540
Tibolla G et al. Class II phosphoinositide 3-kinases contribute to endothelial cells morphogenesis. 2013 PLoS ONE pmid:23320105
Finley A et al. Sphingosine 1-phosphate mediates hyperalgesia via a neutrophil-dependent mechanism. 2013 PLoS ONE pmid:23372844
Kalhori V et al. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells. 2013 PLoS ONE pmid:23824493
Matheu MP et al. Three phases of CD8 T cell response in the lung following H1N1 influenza infection and sphingosine 1 phosphate agonist therapy. 2013 PLoS ONE pmid:23533579
Punsawad C and Viriyavejakul P Reduction in serum sphingosine 1-phosphate concentration in malaria. 2017 PLoS ONE pmid:28666023
Lim M et al. The role of sphingosine kinase 1/sphingosine-1-phosphate pathway in the myogenic tone of posterior cerebral arteries. 2012 PLoS ONE pmid:22532844
Jongsma M et al. LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. 2011 PLoS ONE pmid:22195035
Soleimani R et al. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. 2011 PLoS ONE pmid:21559342
Spampinato SF et al. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli? 2015 PLoS ONE pmid:26197437
Malik FA et al. Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity. 2015 PLoS ONE pmid:26079370
El-Najjar N et al. Increased Levels of Sphingosylphosphorylcholine (SPC) in Plasma of Metabolic Syndrome Patients. 2015 PLoS ONE pmid:26466367
Valverde O et al. GPR3 receptor, a novel actor in the emotional-like responses. 2009 PLoS ONE pmid:19259266