Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Peripheral Arterial Disease D058729 7 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Farber Lipogranulomatosis D055577 1 associated lipids
Acute Lung Injury D055371 33 associated lipids
Lung Injury D055370 14 associated lipids
Niemann-Pick Disease, Type C D052556 1 associated lipids
Atherosclerosis D050197 85 associated lipids
Ileus D045823 3 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Endotoxemia D019446 27 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Teratocarcinoma D018243 7 associated lipids
Weight Gain D015430 101 associated lipids
Reperfusion Injury D015427 65 associated lipids
Vascular Diseases D014652 16 associated lipids
Tuberculosis D014376 20 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Thrombocytopenia D013921 15 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Sensation Disorders D012678 2 associated lipids
Sarcoma 180 D012510 21 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Retinal Detachment D012163 10 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Pulmonary Edema D011654 23 associated lipids
Psoriasis D011565 47 associated lipids
Proteinuria D011507 30 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Pain D010146 64 associated lipids
Ovarian Diseases D010049 5 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Neuroblastoma D009447 66 associated lipids
Neuralgia D009437 28 associated lipids
Nerve Degeneration D009410 53 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Cardiomyopathies D009202 10 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Melanoma D008545 69 associated lipids
Lung Neoplasms D008175 171 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Leukemia D007938 74 associated lipids
Insulinoma D007340 28 associated lipids
Insulin Resistance D007333 99 associated lipids
Influenza, Human D007251 11 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypersensitivity D006967 22 associated lipids
Hyperalgesia D006930 42 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Heart Failure D006333 36 associated lipids
Glioma D005910 112 associated lipids
Glioblastoma D005909 27 associated lipids
Fibrosis D005355 23 associated lipids
Eye Abnormalities D005124 7 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Edema D004487 152 associated lipids
Dilatation, Pathologic D004108 5 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Coronary Disease D003327 70 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Colitis D003092 69 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Asthma D001249 52 associated lipids
Arthritis D001168 41 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Fabry Disease D000795 4 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia D000740 21 associated lipids
Anaphylaxis D000707 35 associated lipids
Adenoma D000236 40 associated lipids
Adenocarcinoma D000230 166 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Williams PA et al. Hypoxia augments outgrowth endothelial cell (OEC) sprouting and directed migration in response to sphingosine-1-phosphate (S1P). 2015 PLoS ONE pmid:25875493
Wang Z et al. The Effect of Sphingosine 1-Phosphate/Sphingosine 1-Phosphate Receptor on Neutrophil Function and the Relevant Signaling Pathway. 2015 Acta Haematol. pmid:25872153
Wilson PC et al. Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel. 2015 Mol. Endocrinol. pmid:25871850
Rhee SH et al. Pelvic organ prolapse is associated with alteration of sphingosine-1-phosphate/Rho-kinase signalling pathway in human vaginal wall. 2015 J Obstet Gynaecol pmid:25692679
Ji F et al. K6PC-5, a novel sphingosine kinase 1 (SphK1) activator, alleviates dexamethasone-induced damages to osteoblasts through activating SphK1-Akt signaling. 2015 Biochem. Biophys. Res. Commun. pmid:25680461
Breslin JW et al. Involvement of local lamellipodia in endothelial barrier function. 2015 PLoS ONE pmid:25658915
Khavandgar Z and Murshed M Sphingolipid metabolism and its role in the skeletal tissues. 2015 Cell. Mol. Life Sci. pmid:25424644
Abdel-Latif A et al. Lysophospholipids in coronary artery and chronic ischemic heart disease. 2015 Curr. Opin. Lipidol. pmid:26270808
Iwabuchi K et al. Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. 2015 Mediators Inflamm. pmid:26609196
Mahajan-Thakur S et al. Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. 2015 Mediators Inflamm. pmid:26604433
Kassmer SH et al. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate. 2015 Nat Commun pmid:26456232
Camp SM et al. Pulmonary endothelial cell barrier enhancement by novel FTY720 analogs: methoxy-FTY720, fluoro-FTY720, and β-glucuronide-FTY720. 2015 Chem. Phys. Lipids pmid:26272033
Galvani S et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. 2015 Sci Signal pmid:26268607
Mooren OL et al. Role of N-WASP in Endothelial Monolayer Formation and Integrity. 2015 J. Biol. Chem. pmid:26070569
Blaho VA et al. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. 2015 Nature pmid:26053123
Wang J et al. Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis. 2015 Biomaterials pmid:26036174
Rao PV Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. 2014 Mar-Apr J Ocul Pharmacol Ther pmid:24283588
Qin Z et al. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. 2014 Mol. Cancer Ther. pmid:24140934
Ryu JM et al. Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. 2014 Stem Cell Res pmid:24145189
Yu Y et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. 2014 Lipids pmid:24158769
Giannouli CC et al. Visualizing S1P-directed cellular egress by intravital imaging. 2014 Biochim. Biophys. Acta pmid:24090699
Zhang Y et al. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. 2014 J. Clin. Invest. pmid:24837436
Kurano M et al. Induction of insulin secretion by apolipoprotein M, a carrier for sphingosine 1-phosphate. 2014 Biochim. Biophys. Acta pmid:24814049
Arya D et al. Sphingosine-1-phosphate promotes the differentiation of adipose-derived stem cells into endothelial nitric oxide synthase (eNOS) expressing endothelial-like cells. 2014 J. Biomed. Sci. pmid:24898615
Maceyka M and Spiegel S Sphingolipid metabolites in inflammatory disease. 2014 Nature pmid:24899305
Nagata Y et al. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation. 2014 Exp. Cell Res. pmid:24960577
Uhlig S et al. Differential regulation of lung endothelial permeability in vitro and in situ. 2014 Cell. Physiol. Biochem. pmid:24977477
Meng Y et al. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. 2014 Fertil. Steril. pmid:24993801
Kang JW and Lee SM Impaired expression of caveolin-1 contributes to hepatic ischemia and reperfusion injury. 2014 Biochem. Biophys. Res. Commun. pmid:24997335
Ohotski J et al. Sphingosine kinase 2 prevents the nuclear translocation of sphingosine 1-phosphate receptor-2 and tyrosine 416 phosphorylated c-Src and increases estrogen receptor negative MDA-MB-231 breast cancer cell growth: The role of sphingosine 1-phosphate receptor-4. 2014 Cell. Signal. pmid:24486401
Takeo T et al. Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. 2014 Cryobiology pmid:24201107
de Assuncao TM et al. New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids. 2014 J. Biol. Chem. pmid:24759103
Nakanaga K et al. Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. 2014 J. Biochem. pmid:24451492
Tibboel J et al. Sphingolipids in lung growth and repair. 2014 Chest pmid:24394822
Kim YI et al. An endoplasmic reticulum stress-initiated sphingolipid metabolite, ceramide-1-phosphate, regulates epithelial innate immunity by stimulating β-defensin production. 2014 Mol. Cell. Biol. pmid:25312644
Kułakowska A et al. Increased levels of sphingosine-1-phosphate in cerebrospinal fluid of patients diagnosed with tick-borne encephalitis. 2014 J Neuroinflammation pmid:25421616
Gomes L et al. Sphingosine 1-phosphate in acute dengue infection. 2014 PLoS ONE pmid:25409037
Xu M et al. FTY720 inhibits tubulointerstitial inflammation in albumin overload-induced nephropathy of rats via the Sphk1 pathway. 2014 Acta Pharmacol. Sin. pmid:25399649
Watanabe C et al. Antagonism and synergy of single chain sphingolipids sphingosine and sphingosine-1-phosphate toward lipid bilayer properties. Consequences for their role as cell fate regulators. 2014 Langmuir pmid:25386673
Chen J et al. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. 2014 PLoS Genet. pmid:25356849
Degagné E et al. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. 2014 J. Clin. Invest. pmid:25347472
Wang F and Ye P Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein. 2014 Lipids Health Dis pmid:25339382
Keller J et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. 2014 Nat Commun pmid:25333900
Lepletier A et al. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease. 2014 PLoS Negl Trop Dis pmid:25330249
Bradley E et al. Critical role of Spns2, a sphingosine-1-phosphate transporter, in lung cancer cell survival and migration. 2014 PLoS ONE pmid:25330231
Xu H et al. Sphingosine-1-phosphate receptor agonist, FTY720, restores coronary flow reserve in diabetic rats. 2014 Circ. J. pmid:25319164
Fukui H et al. S1P-Yap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish. 2014 Dev. Cell pmid:25313964
Obinata H et al. Individual variation of human S1P₁ coding sequence leads to heterogeneity in receptor function and drug interactions. 2014 J. Lipid Res. pmid:25293589
Liu M et al. Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. 2014 J. Biol. Chem. pmid:24318881
Li F et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. 2014 Hum. Reprod. pmid:24221908
Bigaud M et al. Second generation S1P pathway modulators: research strategies and clinical developments. 2014 Biochim. Biophys. Acta pmid:24239768
Huang YL et al. Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. 2014 Cell. Signal. pmid:24333325
Emery SM et al. Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. 2014 J. Pharmacol. Exp. Ther. pmid:24259678
Adamson RH et al. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24531813
Rosen H et al. The organization of the sphingosine 1-phosphate signaling system. 2014 Curr. Top. Microbiol. Immunol. pmid:24728591
Hanson MA and Peach R Structural biology of the S1P1 receptor. 2014 Curr. Top. Microbiol. Immunol. pmid:24728592
Cahalan SM Chemical and genetic tools to explore S1P biology. 2014 Curr. Top. Microbiol. Immunol. pmid:24728593
Arnon TI and Cyster JG Blood, sphingosine-1-phosphate and lymphocyte migration dynamics in the spleen. 2014 Curr. Top. Microbiol. Immunol. pmid:24728595
Nguyen AV et al. STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer. 2014 World J. Gastroenterol. pmid:25132744
Deng Y et al. Sphingosine Kinase-1/sphingosine 1-phosphate pathway in diabetic nephropathy. 2014 Chin. Med. J. pmid:25131242
Ogle ME et al. Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning. 2014 Acta Biomater pmid:25128750
Bi Y et al. Sphingosine-1-phosphate mediates a reciprocal signaling pathway between stellate cells and cancer cells that promotes pancreatic cancer growth. 2014 Am. J. Pathol. pmid:25111230
Ishitsuka A et al. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. 2014 Int. J. Mol. Med. pmid:25109763
Xiong H et al. SphK1 confers resistance to apoptosis in gastric cancer cells by downregulating Bim via stimulating Akt/FoxO3a signaling. 2014 Oncol. Rep. pmid:25109605
Rolin J and Maghazachi AA Implications of chemokines, chemokine receptors, and inflammatory lipids in atherosclerosis. 2014 J. Leukoc. Biol. pmid:24493826
Zhao X et al. Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. 2014 J. Mol. Cell. Cardiol. pmid:25106095
Li MH et al. Induction of chemokine (C-C motif) ligand 2 by sphingosine-1-phosphate signaling in neuroblastoma. 2014 J. Pediatr. Surg. pmid:25092091
Awojoodu AO et al. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD. 2014 Blood pmid:25075126
Tong X et al. The compensatory enrichment of sphingosine -1- phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus. 2014 Cardiovasc Diabetol pmid:24751283
Xiong Y and Hla T S1P control of endothelial integrity. 2014 Curr. Top. Microbiol. Immunol. pmid:24728594
Mendelson K et al. Sphingosine 1-phosphate signalling. 2014 Development pmid:24346695
Hait NC et al. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. 2014 Nat. Neurosci. pmid:24859201
Rahman MM et al. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids. 2014 PLoS ONE pmid:24647471
Halmer R et al. Sphingolipids: important players in multiple sclerosis. 2014 Cell. Physiol. Biochem. pmid:24977485
Park SM et al. Sphingosine-1-phosphate lyase is expressed by CD68+ cells on the parenchymal side of marginal reticular cells in human lymph nodes. 2014 Eur. J. Immunol. pmid:24825162
Arlt O et al. Sphingosine-1-phosphate modulates dendritic cell function: focus on non-migratory effects in vitro and in vivo. 2014 Cell. Physiol. Biochem. pmid:24977479
Don AS et al. Re-configuration of sphingolipid metabolism by oncogenic transformation. 2014 Biomolecules pmid:24970218
Snelder N et al. Translational pharmacokinetic modeling of fingolimod (FTY720) as a paradigm compound subject to sphingosine kinase-mediated phosphorylation. 2014 Drug Metab. Dispos. pmid:24965813
Tarbell JM et al. Mechanosensing at the vascular interface. 2014 Annu Rev Biomed Eng pmid:24905872
Potì F et al. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). 2014 Cardiovasc. Res. pmid:24891400
Chawla S et al. Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects. 2014 PLoS ONE pmid:24887065
Janes K et al. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. 2014 J. Biol. Chem. pmid:24876379
Yan W et al. Adiponectin regulates SR Ca(2+) cycling following ischemia/reperfusion via sphingosine 1-phosphate-CaMKII signaling in mice. 2014 J. Mol. Cell. Cardiol. pmid:24852843
Smyth SS et al. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. 2014 Arterioscler. Thromb. Vasc. Biol. pmid:24482375
Zhang J and Song J Amphiphilic degradable polymers for immobilization and sustained delivery of sphingosine 1-phosphate. 2014 Acta Biomater pmid:24631657
Priceman SJ et al. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. 2014 Cell Rep pmid:24630990
Oizumi A et al. Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate. 2014 PLoS ONE pmid:24586752
Guan Z et al. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. 2014 J. Am. Soc. Nephrol. pmid:24578134
Takabe K and Spiegel S Export of sphingosine-1-phosphate and cancer progression. 2014 J. Lipid Res. pmid:24474820
Ishizawa S et al. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. 2014 Clin. Exp. Nephrol. pmid:24463961
Couttas TA et al. Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer's disease pathogenesis. 2014 Acta Neuropathol Commun pmid:24456642
Gassowska M et al. Sphingosine kinases/sphingosine-1-phosphate and death Signalling in APP-transfected cells. 2014 Neurochem. Res. pmid:24452756
Borge M et al. The expression of sphingosine-1 phosphate receptor-1 in chronic lymphocytic leukemia cells is impaired by tumor microenvironmental signals and enhanced by piceatannol and R406. 2014 J. Immunol. pmid:25127862
Egom EE Sphingosine-1-phosphate signalling as a therapeutic target for patients with abnormal glucose metabolism and ischaemic heart disease. 2014 J Cardiovasc Med (Hagerstown) pmid:23839592
Cencetti F et al. Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis. 2014 FEBS J. pmid:25131845
Zeng Y et al. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24285115
Speak AO et al. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. 2014 Blood pmid:24235134
Nagahashi M et al. Sphingosine-1-phosphate in chronic intestinal inflammation and cancer. 2014 Adv Biol Regul pmid:24210073
Ratajczak MZ et al. The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. 2014 Expert Opin. Ther. Targets pmid:24188167
Chawla S et al. Exogenous sphingosine 1-phosphate protects murine splenocytes against hypoxia-induced injury. 2014 Lipids pmid:24190514