Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Sarcoma 180 D012510 21 associated lipids
Edema D004487 152 associated lipids
Arthritis D001168 41 associated lipids
Heart Failure D006333 36 associated lipids
Pulmonary Edema D011654 23 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypersensitivity D006967 22 associated lipids
Acne Vulgaris D000152 35 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Melanoma D008545 69 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Asthma D001249 52 associated lipids
Weight Gain D015430 101 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Proteinuria D011507 30 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Fibrosis D005355 23 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Psoriasis D011565 47 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Nerve Degeneration D009410 53 associated lipids
Hypertension D006973 115 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Hyperalgesia D006930 42 associated lipids
Anaphylaxis D000707 35 associated lipids
Thrombocytopenia D013921 15 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Cardiomyopathies D009202 10 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Adenoma D000236 40 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Vascular Diseases D014652 16 associated lipids
Ovarian Diseases D010049 5 associated lipids
Anemia D000740 21 associated lipids
Glioblastoma D005909 27 associated lipids
Fabry Disease D000795 4 associated lipids
Influenza, Human D007251 11 associated lipids
Retinal Detachment D012163 10 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Atherosclerosis D050197 85 associated lipids
Dilatation, Pathologic D004108 5 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Insulin Resistance D007333 99 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Endotoxemia D019446 27 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Acute Lung Injury D055371 33 associated lipids
Sensation Disorders D012678 2 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Neuralgia D009437 28 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Lung Injury D055370 14 associated lipids
Teratocarcinoma D018243 7 associated lipids
Eye Abnormalities D005124 7 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Ileus D045823 3 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Niemann-Pick Disease, Type C D052556 1 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Vasta V et al. Sphingosine 1-phosphate induces arachidonic acid mobilization in A549 human lung adenocarcinoma cells. 2000 Biochim. Biophys. Acta pmid:10601704
Van Brocklyn JR et al. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. 2000 Blood pmid:10753843
English D et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. 2000 FASEB J. pmid:11053247
Shin Y et al. Diverse effects of sphingosine on calcium mobilization and influx in differentiated HL-60 cells. 2000 Cell Calcium pmid:10859593
Himmel HM et al. Evidence for Edg-3 receptor-mediated activation of I(K.ACh) by sphingosine-1-phosphate in human atrial cardiomyocytes. 2000 Mol. Pharmacol. pmid:10908314
Driever W Developmental biology. Bringing two hearts together. 2000 Nature pmid:10910341
Kupperman E et al. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. 2000 Nature pmid:10910360
Meacci E et al. Receptor-activated phospholipase D is present in caveolin-3-enriched light membranes of C2C12 myotubes. 2000 FEBS Lett. pmid:10802049
Orlati S et al. Sphingosine-1-phosphate activates phospholipase D in human airway epithelial cells via a G protein-coupled receptor. 2000 Arch. Biochem. Biophys. pmid:10683250
Goetzl EJ et al. Lysophospholipid enhancement of human T cell sensitivity to diphtheria toxin by increased expression of heparin-binding epidermal growth factor. 1999 May-Jun Proc. Assoc. Am. Physicians pmid:10354366
Gueguen G et al. Structure-activity analysis of the effects of lysophosphatidic acid on platelet aggregation. 1999 Biochemistry pmid:10387090
Huang JS et al. Ethanol potentiates the mitogenic effects of sphingosine 1-phosphate by a zinc- and calcium-dependent mechanism in fibroblasts. 1999 Arch. Biochem. Biophys. pmid:10334873
Kozawa O et al. Sphingosine 1-phosphate regulates heat shock protein 27 induction by a p38 MAP kinase-dependent mechanism in aortic smooth muscle cells. 1999 Exp. Cell Res. pmid:10413591
Augé N et al. Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. 1999 J. Biol. Chem. pmid:10419457
Igarashi Y [Recent development of sphingosin 1-phosphate studies as a second messenger or a second agonist in cell signaling]. 1999 Tanpakushitsu Kakusan Koso pmid:10396983
Hisano N et al. Induction and suppression of endothelial cell apoptosis by sphingolipids: a possible in vitro model for cell-cell interactions between platelets and endothelial cells. 1999 Blood pmid:10361127
Meacci E et al. Effect of Rho and ADP-ribosylation factor GTPases on phospholipase D activity in intact human adenocarcinoma A549 cells. 1999 J. Biol. Chem. pmid:10373471
Tolan D et al. Assessment of the extracellular and intracellular actions of sphingosine 1-phosphate by using the p42/p44 mitogen-activated protein kinase cascade as a model. 1999 Cell. Signal. pmid:10376808
Okamoto H et al. EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. 1999 Biochem. Biophys. Res. Commun. pmid:10381367
Edsall LC and Spiegel S Enzymatic measurement of sphingosine 1-phosphate. 1999 Anal. Biochem. pmid:10405296
Cavallini L et al. Ganglioside GM1 protection from apoptosis of rat heart fibroblasts. 1999 Arch. Biochem. Biophys. pmid:10510273
Xia P et al. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. 1999 J. Biol. Chem. pmid:10551885
Dygas A et al. Exogenous sphingosine 1-phosphate and sphingosylphosphorylcholine do not stimulate phospholipase D in C6 glioma cells. 1999 Acta Biochim. Pol. pmid:10453985
Wójcik M and Barańska J Sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate modulate phosphatidylserine homeostasis in glioma C6 cells. 1999 Acta Biochim. Pol. pmid:10453988
Waeber C and Chiu ML In vitro autoradiographic visualization of guanosine-5'-O-(3-[35S]thio)triphosphate binding stimulated by sphingosine 1-phosphate and lysophosphatidic acid. 1999 J. Neurochem. pmid:10461914
Hotchin NA et al. Differential activation of focal adhesion kinase, Rho and Rac by the ninth and tenth FIII domains of fibronectin. 1999 J. Cell. Sci. pmid:10444388
Kon J et al. Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. 1999 J. Biol. Chem. pmid:10446161
Ancellin N and Hla T Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. 1999 J. Biol. Chem. pmid:10383399
Dallalio G et al. Inhibition of human erythroid colony formation by ceramide. 1999 Exp. Hematol. pmid:10390188
Hla T et al. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? 1999 Biochem. Pharmacol. pmid:10423159
Prieschl EE et al. The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after Fc epsilon receptor I triggering. 1999 J. Exp. Med. pmid:10429665
Sato K et al. Activation of phospholipase C-Ca2+ system by sphingosine 1-phosphate in CHO cells transfected with Edg-3, a putative lipid receptor. 1999 FEBS Lett. pmid:9928946
Hung WC et al. Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. 1999 Biochem. J. pmid:9931312
Zhang G et al. Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate. 1999 Gene pmid:9931453
Sato K et al. Possible involvement of cell surface receptors in sphingosine 1-phosphate-induced activation of extracellular signal-regulated kinase in C6 glioma cells. 1999 Mol. Pharmacol. pmid:9882706
Sato K et al. Sphingosine 1-phosphate induces expression of early growth response-1 and fibroblast growth factor-2 through mechanism involving extracellular signal-regulated kinase in astroglial cells. 1999 Brain Res. Mol. Brain Res. pmid:10640689
English D et al. Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. 1999 J. Hematother. Stem Cell Res. pmid:10645770
Lee MJ et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. 1999 Cell pmid:10555146
Guo J et al. Effects of sphingosine 1-phosphate on pacemaker activity in rabbit sino-atrial node cells. 1999 Pflugers Arch. pmid:10555561
Hong G et al. Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. 1999 FEBS Lett. pmid:10556527
De Jonghe S et al. Structure-activity relationship of short-chain sphingoid bases as inhibitors of sphingosine kinase. 1999 Bioorg. Med. Chem. Lett. pmid:10560747
Xia P et al. Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. 1999 J. Biol. Chem. pmid:10567432
Meyer zu Heringdorf D et al. Role of sphingosine kinase in Ca(2+) signalling by epidermal growth factor receptor. 1999 FEBS Lett. pmid:10567700
Stewart CE et al. Increased tyrosine kinase activity but not calcium mobilization is required for ceramide-induced apoptosis. 1999 Exp. Cell Res. pmid:10413587
Pyne S et al. Extracellular actions of sphingosine I-phosphate through endothelial differentiation gene products in mammalian cells: role in regulating proliferation and apoptosis. 1999 Biochem. Soc. Trans. pmid:10917611
Goetzl EJ and An S A subfamily of G protein-coupled cellular receptors for lysophospholipids and lysosphingolipids. 1999 Adv. Exp. Med. Biol. pmid:10667339
Denisova NA et al. The role of glutathione, membrane sphingomyelin, and its metabolites in oxidative stress-induced calcium "dysregulation" in PC12 cells. 1999 Free Radic. Biol. Med. pmid:10641723
Yang L et al. Sphingosine 1-phosphate formation and intracellular Ca2+ mobilization in human platelets: evaluation with sphingosine kinase inhibitors. 1999 J. Biochem. pmid:10393324
Alemany R et al. Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase. 1999 J. Biol. Chem. pmid:9933590
Zhang Q et al. Sphingosine 1-phosphate stimulates fibronectin matrix assembly through a Rho-dependent signal pathway. 1999 Blood pmid:10216094