Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Sarcoma 180 D012510 21 associated lipids
Edema D004487 152 associated lipids
Arthritis D001168 41 associated lipids
Heart Failure D006333 36 associated lipids
Pulmonary Edema D011654 23 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypersensitivity D006967 22 associated lipids
Acne Vulgaris D000152 35 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Melanoma D008545 69 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Asthma D001249 52 associated lipids
Weight Gain D015430 101 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Proteinuria D011507 30 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Fibrosis D005355 23 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Psoriasis D011565 47 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Nerve Degeneration D009410 53 associated lipids
Hypertension D006973 115 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Hyperalgesia D006930 42 associated lipids
Anaphylaxis D000707 35 associated lipids
Thrombocytopenia D013921 15 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Cardiomyopathies D009202 10 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Adenoma D000236 40 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Vascular Diseases D014652 16 associated lipids
Ovarian Diseases D010049 5 associated lipids
Anemia D000740 21 associated lipids
Glioblastoma D005909 27 associated lipids
Fabry Disease D000795 4 associated lipids
Influenza, Human D007251 11 associated lipids
Retinal Detachment D012163 10 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Atherosclerosis D050197 85 associated lipids
Dilatation, Pathologic D004108 5 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Insulin Resistance D007333 99 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Endotoxemia D019446 27 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Acute Lung Injury D055371 33 associated lipids
Sensation Disorders D012678 2 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Neuralgia D009437 28 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Lung Injury D055370 14 associated lipids
Teratocarcinoma D018243 7 associated lipids
Eye Abnormalities D005124 7 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Ileus D045823 3 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Niemann-Pick Disease, Type C D052556 1 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Sato K et al. Downregulation of mRNA expression of Edg-3, a putative sphingosine 1-phosphate receptor coupled to Ca2+ signaling, during differentiation of HL-60 leukemia cells. 1998 Biochem. Biophys. Res. Commun. pmid:9878524
Moriue T et al. Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells. 2008 Biochem. Biophys. Res. Commun. pmid:18267109
Mazurek N et al. Regulatory effect of phorbol esters on sphingosine kinase in BALB/C 3T3 fibroblasts (variant A31): demonstration of cell type-specific response--a preliminary note. 1994 Biochem. Biophys. Res. Commun. pmid:8292009
Ji F et al. K6PC-5, a novel sphingosine kinase 1 (SphK1) activator, alleviates dexamethasone-induced damages to osteoblasts through activating SphK1-Akt signaling. 2015 Biochem. Biophys. Res. Commun. pmid:25680461
Osada M et al. Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. 2002 Biochem. Biophys. Res. Commun. pmid:12445827
Li QF et al. Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. 2008 Biochem. Biophys. Res. Commun. pmid:18423379
Lee OH et al. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. 1999 Biochem. Biophys. Res. Commun. pmid:10544002
Upadhyaya P et al. The sphingolipid degradation product trans-2-hexadecenal forms adducts with DNA. 2012 Biochem. Biophys. Res. Commun. pmid:22727907
Betito S and Cuvillier O Regulation by sphingosine 1-phosphate of Bax and Bad activities during apoptosis in a MEK-dependent manner. 2006 Biochem. Biophys. Res. Commun. pmid:16414356
Katsuma S et al. Transcriptional profiling of gene expression patterns during sphingosine 1-phosphate-induced mesangial cell proliferation. 2003 Biochem. Biophys. Res. Commun. pmid:12504122
Kang JW and Lee SM Impaired expression of caveolin-1 contributes to hepatic ischemia and reperfusion injury. 2014 Biochem. Biophys. Res. Commun. pmid:24997335
Ikeda M et al. Sphingolipid-to-glycerophospholipid conversion in SPL-null cells implies the existence of an alternative isozyme. 2005 Biochem. Biophys. Res. Commun. pmid:15737611
Viswanathan P et al. Differential elastic responses to barrier-altering agonists in two types of human lung endothelium. 2016 Biochem. Biophys. Res. Commun. pmid:27473658
Takeshita E et al. Diacylglycerol kinase γ is a novel anionic phospholipid binding protein with a selective binding preference. 2014 Biochem. Biophys. Res. Commun. pmid:24486543
Kim MK et al. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation. 2006 Biochem. Biophys. Res. Commun. pmid:16674917
Hu W et al. Lentiviral siRNA silencing of sphingosine-1-phosphate receptors S1P1 and S1P2 in smooth muscle. 2006 Biochem. Biophys. Res. Commun. pmid:16574065
Fujii Y et al. Blocking S1P interaction with S1P₁ receptor by a novel competitive S1P₁-selective antagonist inhibits angiogenesis. 2012 Biochem. Biophys. Res. Commun. pmid:22387544
Boguslawski G et al. Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. 2000 Biochem. Biophys. Res. Commun. pmid:10833459
Yu FC et al. Protective effect of sphingosine-1-phosphate for chronic intermittent hypoxia-induced endothelial cell injury. 2018 Biochem. Biophys. Res. Commun. pmid:29550481
Murakami M et al. Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. 2008 Biochem. Biophys. Res. Commun. pmid:18466763
Loetscher E et al. Assay to measure the secretion of sphingosine-1-phosphate from cells induced by S1P lyase inhibitors. 2013 Biochem. Biophys. Res. Commun. pmid:23499842
Benamer N et al. Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts. 2011 Biochem. Biophys. Res. Commun. pmid:21420933
Yamazaki Y et al. Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. 2000 Biochem. Biophys. Res. Commun. pmid:10679247
Aoki S et al. Fluid shear stress enhances the sphingosine 1-phosphate responses in cell-cell interactions between platelets and endothelial cells. 2007 Biochem. Biophys. Res. Commun. pmid:17512899
Vessey DA et al. Combined sphingosine, S1P and ischemic postconditioning rescue the heart after protracted ischemia. 2008 Biochem. Biophys. Res. Commun. pmid:18706887
Ito K et al. Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. 2007 Biochem. Biophys. Res. Commun. pmid:17418101
Park KS et al. S1P stimulates chemotactic migration and invasion in OVCAR3 ovarian cancer cells. 2007 Biochem. Biophys. Res. Commun. pmid:17349972
Kawata T et al. Sphingosine 1-phosphate inhibits migration and RANTES production in human bronchial smooth muscle cells. 2005 Biochem. Biophys. Res. Commun. pmid:15850807
Santucci MB et al. Sphingosine 1-phosphate promotes antigen processing and presentation to CD4+ T cells in Mycobacterium tuberculosis-infected monocytes. 2007 Biochem. Biophys. Res. Commun. pmid:17673170
Luo J et al. The effects of berberine on a murine model of multiple sclerosis and the SPHK1/S1P signaling pathway. 2017 Biochem. Biophys. Res. Commun. pmid:28655617
Separovic D et al. Combining anticancer agents photodynamic therapy and LCL85 leads to distinct changes in the sphingolipid profile, autophagy, caspase-3 activation in the absence of cell death, and long-term sensitization. 2011 Biochem. Biophys. Res. Commun. pmid:21545791
Lin CI et al. Sphingosine 1-phosphate regulates inflammation-related genes in human endothelial cells through S1P1 and S1P3. 2007 Biochem. Biophys. Res. Commun. pmid:17331465
Hung WC and Chuang LY Induction of apoptosis by sphingosine-1-phosphate in human hepatoma cells is associated with enhanced expression of bax gene product. 1996 Biochem. Biophys. Res. Commun. pmid:8954076
Yang L et al. Activation of protein-tyrosine kinase Syk in human platelets stimulated with lysophosphatidic acid or sphingosine 1-phosphate. 1996 Biochem. Biophys. Res. Commun. pmid:8954916
Bandhuvula P et al. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate. 2009 Biochem. Biophys. Res. Commun. pmid:19250638
Takeshita H et al. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-κB ligand (RANKL) expression in rheumatoid arthritis. 2012 Biochem. Biophys. Res. Commun. pmid:22326262
Al Alam N and Kreydiyyeh SI FTY720P inhibits hepatic Na(+)-K(+) ATPase via S1PR2 and PGE2. 2016 Biochem. Cell Biol. pmid:27501354
Fujita T et al. Delta-catenin/NPRAP (neural plakophilin-related armadillo repeat protein) interacts with and activates sphingosine kinase 1. 2004 Biochem. J. pmid:15193146
Pyne S and Pyne NJ Sphingosine 1-phosphate signalling in mammalian cells. 2000 Biochem. J. pmid:10880336
Ihlefeld K et al. Evidence for a link between histone deacetylation and Ca²+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts. 2012 Biochem. J. pmid:22908849
Wang F et al. Sphingosine 1-phosphate stimulates rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts. 1997 Biochem. J. pmid:9182707
Kharel Y et al. Sphingosine kinase type 2 inhibition elevates circulating sphingosine 1-phosphate. 2012 Biochem. J. pmid:22747486
Hung WC et al. Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. 1999 Biochem. J. pmid:9931312
Kharel Y et al. Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. 2011 Biochem. J. pmid:21848514
Tamama K et al. Extracellular mechanism through the Edg family of receptors might be responsible for sphingosine-1-phosphate-induced regulation of DNA synthesis and migration of rat aortic smooth-muscle cells. 2001 Biochem. J. pmid:11115407
Murata N et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. 2000 Biochem. J. pmid:11104690
Gandy KA et al. Sphingosine 1-phosphate induces filopodia formation through S1PR2 activation of ERM proteins. 2013 Biochem. J. pmid:23106337
Jalink K et al. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. 1995 Biochem. J. pmid:7733903
Banno Y et al. Involvement of phospholipase D in insulin-like growth factor-I-induced activation of extracellular signal-regulated kinase, but not phosphoinositide 3-kinase or Akt, in Chinese hamster ovary cells. 2003 Biochem. J. pmid:12385647
Yamaguchi H et al. Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells. 2003 Biochem. J. pmid:12803545