Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Niemann-Pick Disease, Type C D052556 1 associated lipids
Farber Lipogranulomatosis D055577 1 associated lipids
Sensation Disorders D012678 2 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Ileus D045823 3 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Fabry Disease D000795 4 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Ovarian Diseases D010049 5 associated lipids
Dilatation, Pathologic D004108 5 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Teratocarcinoma D018243 7 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Eye Abnormalities D005124 7 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Watterson KR et al. The role of sphingosine-1-phosphate in smooth muscle contraction. 2005 Cell. Signal. pmid:15567060
Donati C et al. Sphingosine 1-phosphate regulates myogenic differentiation: a major role for S1P2 receptor. 2005 FASEB J. pmid:15625079
Urata Y et al. Sphingosine 1-phosphate induces alpha-smooth muscle actin expression in lung fibroblasts via Rho-kinase. 2005 Kobe J Med Sci pmid:16199931
Hughes SK et al. Fluid shear stress modulates cell migration induced by sphingosine 1-phosphate and vascular endothelial growth factor. 2005 Ann Biomed Eng pmid:16133909
Foss FW et al. Synthesis, stability, and implications of phosphothioate agonists of sphingosine-1-phosphate receptors. 2005 Bioorg. Med. Chem. Lett. pmid:16125386
Tani M et al. Involvement of neutral ceramidase in ceramide metabolism at the plasma membrane and in extracellular milieu. 2005 J. Biol. Chem. pmid:16126722
Katkade V et al. Domain 5 of cleaved high molecular weight kininogen inhibits endothelial cell migration through Akt. 2005 Thromb. Haemost. pmid:16268479
Wei SH et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. 2005 Nat. Immunol. pmid:16273098
Lee HS et al. Antigen-induced Ca2+ mobilization in RBL-2H3 cells: role of I(1,4,5)P3 and S1P and necessity of I(1,4,5)P3 production. 2005 Cell Calcium pmid:16219349
Chalfant CE and Spiegel S Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. 2005 J. Cell. Sci. pmid:16219683
Danieli-Betto D et al. Sphingosine 1-phosphate protects mouse extensor digitorum longus skeletal muscle during fatigue. 2005 Am. J. Physiol., Cell Physiol. pmid:15659717
Roth Z and Hansen PJ Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. 2005 Reproduction pmid:15695618
Tanski WJ et al. Sphingosine-1-phosphate-induced smooth muscle cell migration involves the mammalian target of rapamycin. 2005 J. Vasc. Surg. pmid:15696050
Björklund S et al. Effects of sphingosine 1-phosphate on calcium signaling, proliferation and S1P2 receptor expression in PC Cl3 rat thyroid cells. 2005 Mol. Cell. Endocrinol. pmid:15713536
Anelli V et al. Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. 2005 J. Neurochem. pmid:15715670
Karliner JS Off the shelf but not mass produced. 2005 Chem. Biol. pmid:15975506
Jo E et al. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. 2005 Chem. Biol. pmid:15975516
Li Z et al. Role of guanine nucleotide exchange factor P-Rex-2b in sphingosine 1-phosphate-induced Rac1 activation and cell migration in endothelial cells. 2005 Prostaglandins Other Lipid Mediat. pmid:15967165
Ledent C et al. Premature ovarian aging in mice deficient for Gpr3. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:15956199
Kariya Y et al. Products by the sphingosine kinase/sphingosine 1-phosphate (S1P) lyase pathway but not S1P stimulate mitogenesis. 2005 Genes Cells pmid:15938718
Abbey-Hosch SE et al. Differential regulation of NPR-B/GC-B by protein kinase c and calcium. 2005 Biochem. Pharmacol. pmid:16005434
Waeber C et al. Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. 2004 Jul-Aug Drug News Perspect. pmid:15334188
Brinkmann V et al. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. 2004 Am. J. Transplant. pmid:15196057
Im DS et al. Enhancement of sphingosine 1-phosphate-induced phospholipase C activation during G(0)-G(1) transition in rat hepatocytes. 2004 J. Pharmacol. Sci. pmid:15215654
Pandey S and Assmann SM The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. 2004 Plant Cell pmid:15155892
Taha TA et al. Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. 2004 Biochim. Biophys. Acta pmid:15158755
Duong CQ et al. Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages. 2004 Biochim. Biophys. Acta pmid:15158762
Zhou H and Murthy KS Distinctive G protein-dependent signaling in smooth muscle by sphingosine 1-phosphate receptors S1P1 and S1P2. 2004 Am. J. Physiol., Cell Physiol. pmid:15075212
Barnes PJ Ceramide lances the lungs. 2004 Nat. Med. pmid:14760419
Hung RJ et al. Assembly of adherens junctions is required for sphingosine 1-phosphate-induced matriptase accumulation and activation at mammary epithelial cell-cell contacts. 2004 Am. J. Physiol., Cell Physiol. pmid:15075215
Wang W et al. Physiological sphingosine 1-phosphate requirement for optimal activity of mouse CD4+ regulatory T Cells. 2004 FASEB J. pmid:15084513
Dudek SM et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. 2004 J. Biol. Chem. pmid:15056655
Saba JD and Hla T Point-counterpoint of sphingosine 1-phosphate metabolism. 2004 Circ. Res. pmid:15059942
Miura Y et al. Independence of tumor necrosis factor-alpha-induced adhesion molecule expression from sphingosine 1-phosphate signaling in vascular endothelial cells. 2004 J. Thromb. Haemost. pmid:15140149
Garg SK et al. Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. 2004 J. Infect. Dis. pmid:15143482
Hale JJ et al. Potent S1P receptor agonists replicate the pharmacologic actions of the novel immune modulator FTY720. 2004 Bioorg. Med. Chem. Lett. pmid:15149705
Oshima Y et al. Intraocular gutless adenoviral-vectored VEGF stimulates anterior segment but not retinal neovascularization. 2004 J. Cell. Physiol. pmid:15095287
Meacci E et al. Sphingosine kinase activity is required for sphingosine-mediated phospholipase D activation in C2C12 myoblasts. 2004 Biochem. J. pmid:15109308
Lim HS et al. Syntheses of sphingosine-1-phosphate analogues and their interaction with EDG/S1P receptors. 2004 Bioorg. Med. Chem. Lett. pmid:15109640
Cui J et al. Role of ceramide in ischemic preconditioning. 2004 J. Am. Coll. Surg. pmid:15110811
Jolly PS et al. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. 2004 J. Exp. Med. pmid:15067032
Segura BJ et al. Sphingosine-1-phosphate mediates calcium signaling in guinea pig enteroglial cells. 2004 J. Surg. Res. pmid:14732348
Sanna MG et al. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. 2004 J. Biol. Chem. pmid:14732717
Forrest M et al. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. 2004 J. Pharmacol. Exp. Ther. pmid:14747617
Peng X et al. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. 2004 Am. J. Respir. Crit. Care Med. pmid:15020292
Gräler MH and Goetzl EJ The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. 2004 FASEB J. pmid:14715694
Ohmori T et al. Platelet-derived sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. 2004 J. Thromb. Haemost. pmid:14717991
Renkl A et al. Distinct effects of sphingosine-1-phosphate, lysophosphatidic acid and histamine in human and mouse dendritic cells. 2004 Int. J. Mol. Med. pmid:14719124
Jin ZQ et al. Sphingosine kinase activation mediates ischemic preconditioning in murine heart. 2004 Circulation pmid:15451787
Shimamura K et al. Expression of adhesion molecules by sphingosine 1-phosphate and histamine in endothelial cells. 2004 Eur. J. Pharmacol. pmid:14975703
Kohno T and Igarashi Y Roles for N-glycosylation in the dynamics of Edg-1/S1P1 in sphingosine 1-phosphate-stimulated cells. 2004 Glycoconj. J. pmid:15750791
Barber SC et al. S1P and LPA trigger Schwann cell actin changes and migration. 2004 Eur. J. Neurosci. pmid:15217370
Yatomi Y et al. Sphingosine 1-phosphate breakdown in platelets. 2004 J. Biochem. pmid:15625319
Galaria II et al. Differential regulation of ERK1/2 and p38(MAPK) by components of the Rho signaling pathway during sphingosine-1-phosphate-induced smooth muscle cell migration. 2004 J. Surg. Res. pmid:15555614
Shida D et al. Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. 2004 FEBS Lett. pmid:15556605
Langlois S et al. Membrane type 1-matrix metalloproteinase (MT1-MMP) cooperates with sphingosine 1-phosphate to induce endothelial cell migration and morphogenic differentiation. 2004 Blood pmid:15070679
Ochi S et al. Clostridium perfringens alpha-toxin activates the sphingomyelin metabolism system in sheep erythrocytes. 2004 J. Biol. Chem. pmid:14702348
Hammer S et al. Glucocorticoids mediate differential anti-apoptotic effects in human fibroblasts and keratinocytes via sphingosine-1-phosphate formation. 2004 J. Cell. Biochem. pmid:14991774
vom Dorp F et al. Inhibition of phospholipase C-epsilon by Gi-coupled receptors. 2004 Cell. Signal. pmid:15157671
Allende ML et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. 2004 J. Biol. Chem. pmid:15459201
Yamanaka M et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. 2004 J. Biol. Chem. pmid:15485866
Alewijnse AE et al. Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites. 2004 Br. J. Pharmacol. pmid:15504747
Bhattacharya J Lung injury: sphingosine-1-phosphate to the rescue. 2004 Am. J. Respir. Crit. Care Med. pmid:15504814
Hedemann J et al. Comparison of noradrenaline and lysosphingolipid-induced vasoconstriction in mouse and rat small mesenteric arteries. 2004 Auton Autacoid Pharmacol pmid:15541015
Kumar A et al. Sphingosine-1-phosphate plays a role in the suppression of lateral pseudopod formation during Dictyostelium discoideum cell migration and chemotaxis. 2004 Cell Motil. Cytoskeleton pmid:15476260
Sun C and Bittman R An efficient preparation of isosteric phosphonate analogues of sphingolipids by opening of oxirane and cyclic sulfamidate intermediates with alpha-lithiated alkylphosphonic esters. 2004 J. Org. Chem. pmid:15497998
Wang FX et al. mitochondrial ceramidase overexpression up-regulates Bcl-2 protein level in K562 cells, probably through its metabolite sphingosine-1-phosphate. 2004 Zhongguo Shi Yan Xue Ye Xue Za Zhi pmid:15498114
Nakamura H et al. Effects of synthetic sphingosine-1-phosphate analogs on arachidonic acid metabolism and cell death. 2004 Biochem. Pharmacol. pmid:15498509
Billich A and Ettmayer P Fluorescence-based assay of sphingosine kinases. 2004 Anal. Biochem. pmid:14769343
Amano S et al. Increase of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids. 2004 Br. J. Dermatol. pmid:15541073
Ozbay T et al. ACTH regulates steroidogenic gene expression and cortisol biosynthesis in the human adrenal cortex via sphingolipid metabolism. 2004 Endocr. Res. pmid:15666826
Mo FM et al. Atypical cannabinoid stimulates endothelial cell migration via a Gi/Go-coupled receptor distinct from CB1, CB2 or EDG-1. 2004 Eur. J. Pharmacol. pmid:15063151
Butler J et al. Functional characterization of sphingosine 1-phosphate receptor agonist in human endothelial cells. 2004 Prostaglandins Other Lipid Mediat. pmid:15165029
Chae SS et al. Constitutive expression of the S1P1 receptor in adult tissues. 2004 Prostaglandins Other Lipid Mediat. pmid:15165038
Geoffroy K et al. Bimodal effect of advanced glycation end products on mesangial cell proliferation is mediated by neutral ceramidase regulation and endogenous sphingolipids. 2004 J. Biol. Chem. pmid:15184394
Xin C et al. Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. 2004 J. Biol. Chem. pmid:15192102
Baudhuin LM et al. S1P3-mediated Akt activation and cross-talk with platelet-derived growth factor receptor (PDGFR). 2004 FASEB J. pmid:14657000
Otala M et al. Protection from radiation-induced male germ cell loss by sphingosine-1-phosphate. 2004 Biol. Reprod. pmid:14613902
Kelley GG et al. Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. 2004 Biochem. J. pmid:14567755
Gonzalez E et al. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. 2004 J. Biol. Chem. pmid:15292187
Lee H et al. Lysophospholipids increase ICAM-1 expression in HUVEC through a Gi- and NF-kappaB-dependent mechanism. 2004 Am. J. Physiol., Cell Physiol. pmid:15294853
Roth Z and Hansen PJ Sphingosine 1-phosphate protects bovine oocytes from heat shock during maturation. 2004 Biol. Reprod. pmid:15317688
Hemmings DG et al. Sphingosine 1-phosphate-induced vasoconstriction is elevated in mesenteric resistance arteries from aged female rats. 2004 Br. J. Pharmacol. pmid:15326035
McVerry BJ et al. Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury. 2004 Am. J. Respir. Crit. Care Med. pmid:15282202
Ogretmen B and Hannun YA Biologically active sphingolipids in cancer pathogenesis and treatment. 2004 Nat. Rev. Cancer pmid:15286740
Sutphen R et al. Lysophospholipids are potential biomarkers of ovarian cancer. 2004 Cancer Epidemiol. Biomarkers Prev. pmid:15247129
Sauer B et al. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. 2004 J. Biol. Chem. pmid:15247277
Roviezzo F et al. Human eosinophil chemotaxis and selective in vivo recruitment by sphingosine 1-phosphate. 2004 Proc. Natl. Acad. Sci. U.S.A. pmid:15254297
Hla T Physiological and pathological actions of sphingosine 1-phosphate. 2004 Semin. Cell Dev. Biol. pmid:15271296
Payne SG et al. Modulation of adaptive immune responses by sphingosine-1-phosphate. 2004 Semin. Cell Dev. Biol. pmid:15271297
Oskouian B and Saba JD Death and taxis: what non-mammalian models tell us about sphingosine-1-phosphate. 2004 Semin. Cell Dev. Biol. pmid:15271298
Matsushita K et al. Sphingosine 1-phosphate activates Weibel-Palade body exocytosis. 2004 Proc. Natl. Acad. Sci. U.S.A. pmid:15273282
Augé N et al. Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. 2004 Circulation pmid:15277330
Chavakis T et al. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis. 2004 FASEB J. pmid:15208269
Xu CB et al. Sphingosine signaling and atherogenesis. 2004 Acta Pharmacol. Sin. pmid:15210056
Yokoo E et al. Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via S1P2: cross-talk between platelets and mast cells. 2004 J. Biochem. pmid:15213242
Pierre SC et al. PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. 2004 EMBO J. pmid:15257286
McVerry BJ and Garcia JG Endothelial cell barrier regulation by sphingosine 1-phosphate. 2004 J. Cell. Biochem. pmid:15258893
Karliner JS Mechanisms of cardioprotection by lysophospholipids. 2004 J. Cell. Biochem. pmid:15258895
Deretic D et al. Phosphoinositides, ezrin/moesin, and rac1 regulate fusion of rhodopsin transport carriers in retinal photoreceptors. 2004 Mol. Biol. Cell pmid:13679519