Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Shida D et al. Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. 2004 FEBS Lett. pmid:15556605
Yatomi Y et al. Distribution of sphingosine 1-phosphate, a bioactive sphingolipid, in rat tissues. 1997 FEBS Lett. pmid:9119058
Alemany R et al. Depolarisation induces rapid and transient formation of intracellular sphingosine-1-phosphate. 2001 FEBS Lett. pmid:11741596
Nakahara T et al. Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. 2012 Fertil. Steril. pmid:22763095
Meng Y et al. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. 2014 Fertil. Steril. pmid:24993801
Kaya H et al. Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model? 2008 Fertil. Steril. pmid:17517398
Santulli P et al. Sphingosine pathway deregulation in endometriotic tissues. 2012 Fertil. Steril. pmid:22277765
Hancke K et al. Sphingosine 1-phosphate protects ovaries from chemotherapy-induced damage in vivo. 2007 Fertil. Steril. pmid:17081530
Jesko H et al. Sphingosine kinases modulate the secretion of amyloid β precursor protein from SH-SY5Y neuroblastoma cells: the role of α-synuclein. 2014 Folia Neuropathol pmid:24729344
Riley RT et al. A blood spot method for detecting fumonisin-induced changes in putative sphingolipid biomarkers in LM/Bc mice and humans. 2015 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:25833119
Barthomeuf C Inhibition of S1P-induced angiogenesis, metastasis and inflammation by dietary polyphenols. 2007 Free Radic. Biol. Med. pmid:17189837
Barthomeuf C et al. Inhibition of sphingosine-1-phosphate- and vascular endothelial growth factor-induced endothelial cell chemotaxis by red grape skin polyphenols correlates with a decrease in early platelet-activating factor synthesis. 2006 Free Radic. Biol. Med. pmid:16458188
Camaré C et al. The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL. 2016 Free Radic. Biol. Med. pmid:26855418
Lafargue A et al. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. 2017 Free Radic. Biol. Med. pmid:28431961
Denisova NA et al. The role of glutathione, membrane sphingomyelin, and its metabolites in oxidative stress-induced calcium "dysregulation" in PC12 cells. 1999 Free Radic. Biol. Med. pmid:10641723
Soares R and Azevedo I Inhibition of S1P by polyphenols prevents inflammation and angiogenesis: NFkappaB, a downstream effector? 2007 Free Radic. Biol. Med. pmid:17189836
Chen T et al. Sphingosine-1 phosphate promotes intestinal epithelial cell proliferation via S1PR2. 2017 Front Biosci (Landmark Ed) pmid:27814635
Li N and Zhang F Implication of sphingosin-1-phosphate in cardiovascular regulation. 2016 Front Biosci (Landmark Ed) pmid:27100508
Schmidt KG et al. Sphingosine-1-Phosphate Receptor 5 Modulates Early-Stage Processes during Fibrogenesis in a Mouse Model of Systemic Sclerosis: A Pilot Study. 2017 Front Immunol pmid:29033951
Tan SY et al. Aberrant Gi protein coupled receptor-mediated cell survival signaling in rheumatoid arthritis B cell lines. 2007 Front. Biosci. pmid:17127411
Ponnusamy S et al. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. 2010 Future Oncol pmid:21062159
Alvero AB et al. Anti-tumor activity of phenoxodiol: from bench to clinic. 2008 Future Oncol pmid:18684059
Ikeda H et al. Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5. 2003 Gastroenterology pmid:12557151
Abraham C et al. Lessons Learned From Trials Targeting Cytokine Pathways in Patients With Inflammatory Bowel Diseases. 2017 Gastroenterology pmid:27780712
King A et al. Sphingosine-1-Phosphate Prevents Egress of Hematopoietic Stem Cells From Liver to Reduce Fibrosis. 2017 Gastroenterology pmid:28363640
Hernández-Coronado CG et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. 2016 Gen. Comp. Endocrinol. pmid:27342378
Zhang G et al. Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate. 1999 Gene pmid:9931453
Chandru H and Boggaram V The role of sphingosine 1-phosphate in the TNF-alpha induction of IL-8 gene expression in lung epithelial cells. 2007 Gene pmid:17306937
Deutsch G et al. Extensive macrophage accumulation in young and old Niemann-Pick C1 model mice involves the alternative, M2, activation pathway and inhibition of macrophage apoptosis. 2016 Gene pmid:26707209
Renault AD et al. Metabolism of sphingosine 1-phosphate and lysophosphatidic acid: a genome wide analysis of gene expression in Drosophila. 2002 Gene Expr. Patterns pmid:12617823
Yu H et al. Roles of extracellular and intracellular sphingosine 1-phosphate in cell migration. 2009 Genes Cells pmid:19371379
Katsuma S et al. Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial cell proliferation. 2002 Genes Cells pmid:12485162
Kohno T et al. Sphingosine 1-phosphate promotes cell migration through the activation of Cdc42 in Edg-6/S1P4-expressing cells. 2003 Genes Cells pmid:12875654
Kohno T and Igarashi Y Attenuation of cell motility observed with high doses of sphingosine 1-phosphate or phosphorylated FTY720 involves RGS2 through its interactions with the receptor S1P. 2008 Genes Cells pmid:18513330
Ohno Y et al. Palmitoylation of the sphingosine 1-phosphate receptor S1P is involved in its signaling functions and internalization. 2009 Genes Cells pmid:19619245
Kariya Y et al. Products by the sphingosine kinase/sphingosine 1-phosphate (S1P) lyase pathway but not S1P stimulate mitogenesis. 2005 Genes Cells pmid:15938718
Naetzker S et al. Activation of p38 mitogen-activated protein kinase and partial reactivation of the cell cycle by cis-4-methylsphingosine direct postmitotic neurons towards apoptosis. 2006 Genes Cells pmid:16483315
Yu H et al. Effect of sphingosine-1-phosphate and myoblast transplantation on rat acute myocardial infarction. 2015 Genet. Mol. Res. pmid:26535699
Monier A et al. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. 2009 Genome Res. pmid:19451591
Espinosa Cervantes R [Sphingolipids in embryonic implantation]. 2009 Ginecol Obstet Mex pmid:19899433
Yamagata K et al. Sphingosine 1-phosphate induces the production of glial cell line-derived neurotrophic factor and cellular proliferation in astrocytes. 2003 Glia pmid:12509810
Marfia G et al. Autocrine/paracrine sphingosine-1-phosphate fuels proliferative and stemness qualities of glioblastoma stem cells. 2014 Glia pmid:25042636
López-Juárez A et al. Expression of LPP3 in Bergmann glia is required for proper cerebellar sphingosine-1-phosphate metabolism/signaling and development. 2011 Glia pmid:21319224
Yu N et al. Characterization of lysophosphatidic acid and sphingosine-1-phosphate-mediated signal transduction in rat cortical oligodendrocytes. 2004 Glia pmid:14648542
Shirakawa H et al. Sphingosine-1-phosphate induces Ca signaling and CXCL1 release via TRPC6 channel in astrocytes. 2017 Glia pmid:28300348
Bassi R et al. Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors. 2006 Glia pmid:16470810
Wang S et al. A polysaccharide, MDG-1, induces S1P1 and bFGF expression and augments survival and angiogenesis in the ischemic heart. 2010 Glycobiology pmid:20008963
Kohno T and Igarashi Y Roles for N-glycosylation in the dynamics of Edg-1/S1P1 in sphingosine 1-phosphate-stimulated cells. 2004 Glycoconj. J. pmid:15750791
Ranty ML et al. Ceramide production associated with retinal apoptosis after retinal detachment. 2009 Graefes Arch. Clin. Exp. Ophthalmol. pmid:18958490
Li S et al. Sphingosine-1-phosphate activates the AKT pathway to inhibit chemotherapy induced human granulosa cell apoptosis. 2017 Gynecol. Endocrinol. pmid:28277139
Hancke K et al. Ovarian transplantation for fertility preservation in a sheep model: can follicle loss be prevented by antiapoptotic sphingosine-1-phosphate administration? 2009 Gynecol. Endocrinol. pmid:19906004
Jee BC et al. Dose-dependent effect of sphingosine-1-phosphate in mouse oocyte maturation medium on subsequent embryo development. 2011 Gynecol. Obstet. Invest. pmid:21160167
Smicun Y et al. S1P and LPA have an attachment-dependent regulatory effect on invasion of epithelial ovarian cancer cells. 2007 Gynecol. Oncol. pmid:17716713
Devine KM et al. S1P induced changes in epithelial ovarian cancer proteolysis, invasion, and attachment are mediated by Gi and Rac. 2008 Gynecol. Oncol. pmid:18513786
Schwartz BM et al. Lysophospholipids increase interleukin-8 expression in ovarian cancer cells. 2001 Gynecol. Oncol. pmid:11330965
Smicun Y et al. S1P regulation of ovarian carcinoma invasiveness. 2006 Gynecol. Oncol. pmid:16956652
Montecucco F et al. Impact of systemic inflammation and autoimmune diseases on apoA-I and HDL plasma levels and functions. 2015 Handb Exp Pharmacol pmid:25522998
Nofer JR Signal transduction by HDL: agonists, receptors, and signaling cascades. 2015 Handb Exp Pharmacol pmid:25522990
Zu Heringdorf DM et al. Pharmacology of the sphingosine-1-phosphate signalling system. 2013 Handb Exp Pharmacol pmid:23579459
Selvam SP and Ogretmen B Sphingosine kinase/sphingosine 1-phosphate signaling in cancer therapeutics and drug resistance. 2013 Handb Exp Pharmacol pmid:23563649
Pyne S and Pyne NJ New perspectives on the role of sphingosine 1-phosphate in cancer. 2013 Handb Exp Pharmacol pmid:23563651
Jiang XC and Liu J Sphingolipid metabolism and atherosclerosis. 2013 Handb Exp Pharmacol pmid:23563655
Levkau B Cardiovascular effects of sphingosine-1-phosphate (S1P). 2013 Handb Exp Pharmacol pmid:23563656
Abbasi T and Garcia JG Sphingolipids in lung endothelial biology and regulation of vascular integrity. 2013 Handb Exp Pharmacol pmid:23563658
Gandy KA and Obeid LM Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. 2013 Handb Exp Pharmacol pmid:23563662
Bruni P and Donati C Role of sphingosine 1-phosphate in skeletal muscle cell biology. 2013 Handb Exp Pharmacol pmid:23563671
Minshall RD and Malik AB Transport across the endothelium: regulation of endothelial permeability. 2006 Handb Exp Pharmacol pmid:16999218
Park TS and Goldberg IJ Sphingolipids, lipotoxic cardiomyopathy, and cardiac failure. 2012 Heart Fail Clin pmid:22999245
Keul P et al. HDL and its sphingosine-1-phosphate content in cardioprotection. 2007 Heart Fail Rev pmid:17554629
Lee SY et al. Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. 2015 Hepatology pmid:25808625
Zheng DM et al. Sphingosine 1-phosphate protects rat liver sinusoidal endothelial cells from ethanol-induced apoptosis: Role of intracellular calcium and nitric oxide. 2006 Hepatology pmid:17058266
Wang Y et al. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. 2017 Hepatology pmid:28120434
Lee JF et al. Sphingosine-1-phosphate signaling regulates lamellipodia localization of cortactin complexes in endothelial cells. 2006 Histochem. Cell Biol. pmid:16416022
Wang L et al. Rho GTPases mediated integrin alpha v beta 3 activation in sphingosine-1-phosphate stimulated chemotaxis of endothelial cells. 2008 Histochem. Cell Biol. pmid:18247041
Estrada R et al. Ligand-induced nuclear translocation of S1P(1) receptors mediates Cyr61 and CTGF transcription in endothelial cells. 2009 Histochem. Cell Biol. pmid:18936953
Wu YP et al. Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. 2008 Hum. Mol. Genet. pmid:18424450
Moruno-Manchon JF et al. Inhibiting sphingosine kinase 2 mitigates mutant Huntingtin-induced neurodegeneration in neuron models of Huntington disease. 2017 Hum. Mol. Genet. pmid:28175299
Janecke AR et al. Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. 2017 Hum. Mutat. pmid:28181337
Li F et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. 2014 Hum. Reprod. pmid:24221908
Zhang J et al. Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration. 2013 Hum. Reprod. pmid:24001716
Onions VJ et al. Ovarian tissue viability following whole ovine ovary cryopreservation: assessing the effects of sphingosine-1-phosphate inclusion. 2008 Hum. Reprod. pmid:18216042
Yogi A et al. Sphingosine-1-phosphate-induced inflammation involves receptor tyrosine kinase transactivation in vascular cells: upregulation in hypertension. 2011 Hypertension pmid:21383307
Tar L and Vécsei L [Fingolimod therapy in multiple sclerosis--the issue of the pathomechanism]. 2012 Ideggyogy Sz pmid:23136726
Cortez-Retamozo V et al. Angiotensin II drives the production of tumor-promoting macrophages. 2013 Immunity pmid:23333075
Poissonnier A et al. CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice. 2016 Immunity pmid:27438772
St John AL et al. S1P-Dependent trafficking of intracellular yersinia pestis through lymph nodes establishes Buboes and systemic infection. 2014 Immunity pmid:25238098
Davis KM and Isberg RR Plague's partners in crime. 2014 Immunity pmid:25238090
Luo B et al. Erythropoeitin Signaling in Macrophages Promotes Dying Cell Clearance and Immune Tolerance. 2016 Immunity pmid:26872696
Olivera A et al. The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. 2007 Immunity pmid:17346996
Kurobe H et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. 2006 Immunity pmid:16473829
Dustin ML and Chakraborty AK Tug of war at the exit door. 2008 Immunity pmid:18199414
Weigert A et al. Regulation of macrophage function by sphingosine-1-phosphate. 2009 Immunobiology pmid:19625101
Voelkel NF and Spiegel S Why is effective treatment of asthma so difficult? An integrated systems biology hypothesis of asthma. 2009 Nov-Dec Immunol. Cell Biol. pmid:19546879
Kim CH Reining in FoxP3(+) regulatory T cells by the sphingosine 1-phosphate-S1P1 axis. 2009 Immunol. Cell Biol. pmid:19652661
Dziak R The role of sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) in regulation of osteoclastic and osteoblastic cells. 2013 Immunol. Invest. pmid:24004055
Eigenbrod S et al. Sphingosine kinase and sphingosine-1-phosphate regulate migration, endocytosis and apoptosis of dendritic cells. 2006 Immunol. Invest. pmid:16698674
Schulz C et al. Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue. 2009 Immunol. Res. pmid:19340403
Greco E et al. Natural lysophospholipids reduce Mycobacterium tuberculosis-induced cytotoxicity and induce anti-mycobacterial activity by a phagolysosome maturation-dependent mechanism in A549 type II alveolar epithelial cells. 2010 Immunology pmid:19878354
Turner VM and Mabbott NA Ageing adversely affects the migration and function of marginal zone B cells. 2017 Immunology pmid:28369800
Thamilselvan V et al. Sphingosine-1-phosphate stimulates human Caco-2 intestinal epithelial proliferation via p38 activation and activates ERK by an independent mechanism. 2002 In Vitro Cell. Dev. Biol. Anim. pmid:12197778