Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Lavieu G et al. Sphingolipids in macroautophagy. 2008 Methods Mol. Biol. pmid:18425450
Woszczek G and Fuerst E Ca2+ mobilization assays in GPCR drug discovery. 2015 Methods Mol. Biol. pmid:25563178
Wilkerson JL and Mandal NA Angiogenesis Model of Cornea to Understand the Role of Sphingosine 1-Phosphate. 2017 Methods Mol. Biol. pmid:28660590
Yangyuoru PM et al. Fluorescent lipids as probes for sphingosine kinase activity by capillary electrophoresis. 2013 Methods Mol. Biol. pmid:23386355
Bode C and Gräler MH Quantification of sphingosine-1-phosphate and related sphingolipids by liquid chromatography coupled to tandem mass spectrometry. 2012 Methods Mol. Biol. pmid:22528437
Morishige J et al. A cleanup method for mass spectrometry of sphingosine-1-phosphate in blood and solid tissues using a phosphate capture molecule. 2012 Methods Mol. Biol. pmid:22528438
Visentin B et al. Immunohistochemical detection of sphingosine-1-phosphate and sphingosine kinase-1 in human tissue samples. 2012 Methods Mol. Biol. pmid:22528439
Obinata H and Hla T Assessment of sphingosine-1-phosphate activity in biological samples by receptor internalization and adherens junction formation. 2012 Methods Mol. Biol. pmid:22528440
Medlin MD et al. Quantifying sphingosine-1-phosphate-dependent activation of the RhoGTPases. 2012 Methods Mol. Biol. pmid:22528442
Belmonte SA and Suhaiman L Optimized protocols to analyze sphingosine-1-phosphate signal transduction pathways during acrosomal exocytosis in human sperm. 2012 Methods Mol. Biol. pmid:22528443
Ishii T et al. Use of intravital microscopy and in vitro chemotaxis assays to study the roles of sphingosine-1-phosphate in bone homeostasis. 2012 Methods Mol. Biol. pmid:22528444
Meacci E et al. Sphingosine-1-phosphate signaling in skeletal muscle cells. 2012 Methods Mol. Biol. pmid:22528446
Wong RC et al. Maintenance of human embryonic stem cells by sphingosine-1-phosphate and platelet-derived growth factor. 2012 Methods Mol. Biol. pmid:22528447
Bieberich E Ceramide and sphingosine-1-phosphate signaling in embryonic stem cell differentiation. 2012 Methods Mol. Biol. pmid:22528448
Callihan P and Hooks SB Sphingosine-1-phosphate signaling in neural progenitors. 2012 Methods Mol. Biol. pmid:22528449
Su SC and Bayless KJ Utilizing sphingosine-1-phosphate to stimulate sprouting angiogenesis. 2012 Methods Mol. Biol. pmid:22528450
Chae SS and Hla T Inhibition of gene expression in vivo using multiplex siRNA. 2005 Methods Mol. Biol. pmid:15990401
Olivera A et al. Assaying sphingosine kinase activity. 2000 Meth. Enzymol. pmid:10563328
Brindley DN et al. Analysis of ceramide 1-phosphate and sphingosine-1-phosphate phosphatase activities. 2000 Meth. Enzymol. pmid:10563330
Edsall L et al. Enzymatic method for measurement of sphingosine 1-phosphate. 2000 Meth. Enzymol. pmid:11070858
Sullards MC Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry. 2000 Meth. Enzymol. pmid:11070861
Van Brocklyn JR and Spiegel S Binding of sphingosine 1-phosphate to cell surface receptors. 2000 Meth. Enzymol. pmid:11070888
Maceyka M et al. Measurement of mammalian sphingosine-1-phosphate phosphohydrolase activity in vitro and in vivo. 2007 Meth. Enzymol. pmid:17954251
Mitra P et al. A rapid and sensitive method to measure secretion of sphingosine-1-phosphate. 2007 Meth. Enzymol. pmid:17954252
Alessenko AV The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation, differentiation and death. 2000 Membr Cell Biol pmid:10779176
Sauer B et al. Antiapoptotic action of 1alpha,25-dihydroxyvitamin D3 in primary human melanocytes. 2003 Melanoma Res. pmid:12883359
Olesch C et al. Beyond Immune Cell Migration: The Emerging Role of the Sphingosine-1-phosphate Receptor S1PR4 as a Modulator of Innate Immune Cell Activation. 2017 Mediators Inflamm. pmid:28848247
Syed SN et al. S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1 or Lipocalin-2. 2017 Mediators Inflamm. pmid:28804221
Kong Y et al. Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells. 2014 Mediators Inflamm. pmid:25147438
Aoki M et al. Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential. 2016 Mediators Inflamm. pmid:26966342
Chumanevich A et al. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2. 2016 Mediators Inflamm. pmid:26884643
Malemud CJ The discovery of novel experimental therapies for inflammatory arthritis. 2009 Mediators Inflamm. pmid:20339519
Iwabuchi K et al. Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. 2015 Mediators Inflamm. pmid:26609196
Mahajan-Thakur S et al. Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. 2015 Mediators Inflamm. pmid:26604433
Moon E et al. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling. 2015 Mediators Inflamm. pmid:26576074
Zhao C et al. Chemical Hypoxia Brings to Light Altered Autocrine Sphingosine-1-Phosphate Signalling in Rheumatoid Arthritis Synovial Fibroblasts. 2015 Mediators Inflamm. pmid:26556954
Herzog C et al. Intravenous sphingosylphosphorylcholine protects ischemic and postischemic myocardial tissue in a mouse model of myocardial ischemia/reperfusion injury. 2010 Mediators Inflamm. pmid:21274265
Su K et al. FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. 2017 Mediators Inflamm. pmid:28270699
Knapp M et al. Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. 2009 Med. Sci. Monit. pmid:19721401
Vessey DA et al. FTY720 postconditions isolated perfused heart by a mechanism independent of sphingosine kinase 2 and different from S1P or ischemic postconditioning. 2013 Med Sci Monit Basic Res pmid:23567658
Ceccom J et al. [Sphingosine 1-phosphate as a biomarker for Alzheimer's disease?]. 2014 Med Sci (Paris) pmid:24939530
Pruvost R and Le Stunff H [Sphingosine kinase-1: role in non alcoholic fatty liver disease]. Med Sci (Paris) pmid:27615179
Cuvillier O [SphingomabTM, an anti-sphingosine 1-phosphate antibody to inhibit hypoxia]. 2015 Med Sci (Paris) pmid:26576602
Cuvillier O [Sphingosine 1-phosphate receptors: from biology to physiopathology]. 2012 Med Sci (Paris) pmid:23171898
Vogt D and Stark H Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. 2017 Med Res Rev pmid:27480072
Aoyagi T et al. The role of sphingosine-1-phosphate in breast cancer tumor-induced lymphangiogenesis. 2012 Lymphat Res Biol pmid:22984905
Mendes-Braz M et al. The effects of glucose and lipids in steatotic and non-steatotic livers in conditions of partial hepatectomy under ischaemia-reperfusion. 2014 Liver Int. pmid:24107124
Ono Y et al. Sphingosine 1-phosphate release from platelets during clot formation: close correlation between platelet count and serum sphingosine 1-phosphate concentration. 2013 Lipids Health Dis pmid:23418753
Wang F and Ye P Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein. 2014 Lipids Health Dis pmid:25339382
Iino J et al. Platelet-derived sphingosine 1-phosphate induces migration of Jurkat T cells. 2014 Lipids Health Dis pmid:25253303
Abu El-Asrar AM et al. Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. 2014 Lipids Health Dis pmid:25496321
Argraves KM et al. S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. 2011 Lipids Health Dis pmid:21554699
Ruiz M et al. HDL-associated ApoM is anti-apoptotic by delivering sphingosine 1-phosphate to S1P1 & S1P3 receptors on vascular endothelium. 2017 Lipids Health Dis pmid:28179022
Yu Y et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. 2014 Lipids pmid:24158769
Kurek K et al. Sphingolipid metabolism in colorectal adenomas varies depending on histological architecture of polyps and grade of nuclear dysplasia. 2015 Lipids pmid:25595595
Chawla S and Saxena S Differential modulation of S1PR(1-5) and specific activities of SphK and nSMase in pulmonary and cerebral tissues of rats exposed to hypobaric hypoxia. 2015 Lipids pmid:25398597
Knapp M et al. Myocardial infarction changes sphingolipid metabolism in the uninfarcted ventricular wall of the rat. 2012 Lipids pmid:22833182
Gao X et al. Aberrant sphingolipid metabolism in the human fallopian tube with ectopic pregnancy. 2013 Lipids pmid:23881382
Chawla S et al. Exogenous sphingosine 1-phosphate protects murine splenocytes against hypoxia-induced injury. 2014 Lipids pmid:24190514
Gorshkova IA et al. Inhibition of sphingosine-1-phosphate lyase rescues sphingosine kinase-1-knockout phenotype following murine cardiac arrest. 2013 Life Sci. pmid:23892195
Deshpande GP et al. Sphingosine-1-phosphate (S1P) activates STAT3 to protect against de novo acute heart failure (AHF). 2018 Life Sci. pmid:29373815
Kanno T and Nishizaki T Endogenous sphingosine 1-phosphate regulates spontaneous glutamate release from mossy fiber terminals via S1P(3) receptors. 2011 Life Sci. pmid:21683714
Nodai A et al. Sphingosine 1-phosphate induces cyclooxygenase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. 2007 Life Sci. pmid:17382352
Evangelisti C et al. Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. 2016 Leukemia pmid:27461062
Kim CH et al. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. 2012 Leukemia pmid:21769103
Ratajczak MZ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. 2010 Leukemia pmid:20357827
Spiegel S and Kolesnick R Sphingosine 1-phosphate as a therapeutic agent. 2002 Leukemia pmid:12200669
Ratajczak J et al. A novel view of paroxysmal nocturnal hemoglobinuria pathogenesis: more motile PNH hematopoietic stem/progenitor cells displace normal HSPCs from their niches in bone marrow due to defective adhesion, enhanced migration and mobilization in response to erythrocyte-released sphingosine-1 phosphate gradient. 2012 Leukemia pmid:22343521
Watanabe C et al. Antagonism and synergy of single chain sphingolipids sphingosine and sphingosine-1-phosphate toward lipid bilayer properties. Consequences for their role as cell fate regulators. 2014 Langmuir pmid:25386673
Park SW et al. Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through S1P1 receptor activation. 2010 Lab. Invest. pmid:20458275
Urata Y et al. Sphingosine 1-phosphate induces alpha-smooth muscle actin expression in lung fibroblasts via Rho-kinase. 2005 Kobe J Med Sci pmid:16199931
Jo SK et al. Divergent roles of sphingosine kinases in kidney ischemia-reperfusion injury. 2009 Kidney Int. pmid:18971925
Jo SK et al. Sphingosine-1-phosphate receptors: biology and therapeutic potential in kidney disease. 2008 Kidney Int. pmid:18322542
Chen PF et al. Ca2+ signaling induced by sphingosylphosphorylcholine and sphingosine 1-phosphate via distinct mechanisms in rat glomerular mesangial cells. 1998 Kidney Int. pmid:9844123
Ren S et al. Transforming growth factor-beta2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-beta2 by impeding CTGF expression. 2009 Kidney Int. pmid:19657322
Förster A et al. Glucocorticoids protect renal mesangial cells from apoptosis by increasing cellular sphingosine-1-phosphate. 2010 Kidney Int. pmid:20375982
Gandolfo MT and Rabb H Very early alloantigen-independent trafficking of lymphocytes during ischemic acute kidney injury. 2007 Kidney Int. pmid:17554348
Long DA and Price KL Sphingosine kinase-1: a potential mediator of renal fibrosis. 2009 Kidney Int. pmid:19789541
Shayman JA The riddle of the sphinx redux. 2010 Kidney Int. pmid:20431574
Yoshida A and Ueda H Neurobiology of the Edg2 lysophosphatidic acid receptor. 2001 Jpn. J. Pharmacol. pmid:11700008
Sugiyama A et al. Effects of sphingosine 1-phosphate, a naturally occurring biologically active lysophospholipid, on the rat cardiovascular system. 2000 Jpn. J. Pharmacol. pmid:10875754
Green DS et al. Human immunodeficiency virus type 1 gp120 reprogramming of CD4+ T-cell migration provides a mechanism for lymphadenopathy. 2009 J. Virol. pmid:19297493
Gorbunova E et al. Pathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cells. 2010 J. Virol. pmid:20463083
Gavrilovskaya IN et al. Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability. 2008 J. Virol. pmid:18367532
Seo YJ et al. Sphingosine 1-phosphate-metabolizing enzymes control influenza virus propagation and viral cytopathogenicity. 2010 J. Virol. pmid:20519401
Kenagy RD et al. Proliferative capacity of vein graft smooth muscle cells and fibroblasts in vitro correlates with graft stenosis. 2009 J. Vasc. Surg. pmid:19307078
Tanski WJ et al. Sphingosine-1-phosphate-induced smooth muscle cell migration involves the mammalian target of rapamycin. 2005 J. Vasc. Surg. pmid:15696050
Roztocil E et al. Sphingosine-1-phosphate-induced oxygen free radical generation in smooth muscle cell migration requires Galpha12/13 protein-mediated phospholipase C activation. 2007 J. Vasc. Surg. pmid:18155002
Bolz SS and Pohl U Highly effective non-viral gene transfer into vascular smooth muscle cells of cultured resistance arteries demonstrated by genetic inhibition of sphingosine-1-phosphate-induced vasoconstriction. 2003 Jul-Aug J. Vasc. Res. pmid:12913332
Kroetsch JT and Bolz SS The TNF-α/sphingosine-1-phosphate signaling axis drives myogenic responsiveness in heart failure. 2013 J. Vasc. Res. pmid:23594703
Takeya H ['Vegetable wasps and plant worms' and G-protein-coupled receptors]. 2004 J. UOEH pmid:15244075
Miura Y et al. Independence of tumor necrosis factor-alpha-induced adhesion molecule expression from sphingosine 1-phosphate signaling in vascular endothelial cells. 2004 J. Thromb. Haemost. pmid:15140149
Panetti TS et al. Extracellular matrix molecules regulate endothelial cell migration stimulated by lysophosphatidic acid. 2004 J. Thromb. Haemost. pmid:15333043
Ohmori T et al. Platelet-derived sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. 2004 J. Thromb. Haemost. pmid:14717991
Morris AJ et al. Regulation of blood and vascular cell function by bioactive lysophospholipids. 2009 J. Thromb. Haemost. pmid:19630765
Dahm F et al. Distribution and dynamic changes of sphingolipids in blood in response to platelet activation. 2006 J. Thromb. Haemost. pmid:17010150
Aoki S et al. The suppressive effect of sphingosine 1-phosphate on monocyte-endothelium adhesion may be mediated by the rearrangement of the endothelial integrins alpha(5)beta(1) and alpha(v)beta(3). 2007 J. Thromb. Haemost. pmid:17403093
Kager LM et al. Endogenous protein C has a protective role during Gram-negative pneumosepsis (melioidosis). 2013 J. Thromb. Haemost. pmid:23216621
Ulrych T et al. Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation. 2011 J. Thromb. Haemost. pmid:21251196
Yamashita H et al. Sphingosine 1-phosphate receptor expression profile in human gastric cancer cells: differential regulation on the migration and proliferation. 2006 J. Surg. Res. pmid:16183075