Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Niemann-Pick Disease, Type C D052556 1 associated lipids
Farber Lipogranulomatosis D055577 1 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Sensation Disorders D012678 2 associated lipids
Ileus D045823 3 associated lipids
Fabry Disease D000795 4 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Ovarian Diseases D010049 5 associated lipids
Dilatation, Pathologic D004108 5 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Teratocarcinoma D018243 7 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Eye Abnormalities D005124 7 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Cardiomyopathies D009202 10 associated lipids
Retinal Detachment D012163 10 associated lipids
Influenza, Human D007251 11 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Lung Injury D055370 14 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Thrombocytopenia D013921 15 associated lipids
Vascular Diseases D014652 16 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Tuberculosis D014376 20 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Sarcoma 180 D012510 21 associated lipids
Anemia D000740 21 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Hypersensitivity D006967 22 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Pulmonary Edema D011654 23 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Fibrosis D005355 23 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Endotoxemia D019446 27 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Wacker BK et al. Endothelial cell migration on RGD-peptide-containing PEG hydrogels in the presence of sphingosine 1-phosphate. 2008 Biophys. J. pmid:17827231
Provençal M et al. Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins. 2008 Thromb. Haemost. pmid:18327407
Beyer T and Meyer-Hermann M Mechanisms of organogenesis of primary lymphoid follicles. 2008 Int. Immunol. pmid:18334502
Sensken SC et al. Selective activation of G alpha i mediated signalling of S1P3 by FTY720-phosphate. 2008 Cell. Signal. pmid:18313900
Kunisawa J et al. Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells. 2008 Blood pmid:18292290
Nicol GD Nerve growth factor, sphingomyelins, and sensitization in sensory neurons. 2008 Sheng Li Xue Bao pmid:18958367
Park HY et al. K6PC-5, a novel sphingosine kinase activator, improves long-term ultraviolet light-exposed aged murine skin. 2008 Exp. Dermatol. pmid:18341573
Sabourdy F et al. Functions of sphingolipid metabolism in mammals--lessons from genetic defects. 2008 Biochim. Biophys. Acta pmid:18294974
Meacci E et al. Sphingosine kinase activity is required for myogenic differentiation of C2C12 myoblasts. 2008 J. Cell. Physiol. pmid:17654519
Eskan MA et al. TLR4 and S1P receptors cooperate to enhance inflammatory cytokine production in human gingival epithelial cells. 2008 Eur. J. Immunol. pmid:18395849
Krump-Konvalinkova V et al. FTY720 inhibits S1P-mediated endothelial healing: relationship to S1P1-receptor surface expression. 2008 Biochem. Biophys. Res. Commun. pmid:18402775
Olivera A Unraveling the complexities of sphingosine-1-phosphate function: the mast cell model. 2008 Prostaglandins Other Lipid Mediat. pmid:18403224
Sefcik LS et al. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. 2008 Biomaterials pmid:18405965
Arce FT et al. Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin. 2008 Biophys. J. pmid:18408039
Goetzl EJ et al. Regulation of the roles of sphingosine 1-phosphate and its type 1 G protein-coupled receptor in T cell immunity and autoimmunity. 2008 Biochim. Biophys. Acta pmid:18381082
Hong JH et al. K6PC-5, a direct activator of sphingosine kinase 1, promotes epidermal differentiation through intracellular Ca2+ signaling. 2008 J. Invest. Dermatol. pmid:18385762
Lebman DA and Spiegel S Cross-talk at the crossroads of sphingosine-1-phosphate, growth factors, and cytokine signaling. 2008 J. Lipid Res. pmid:18387885
Nishiuma T et al. Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. 2008 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:18359884
Liu HB et al. Sphingosine-1-phosphate and its analogue FTY720 diminish acute pulmonary injury in rats with acute necrotizing pancreatitis. 2008 Pancreas pmid:18362832
Yatomi Y [Physiologically active substances derived from activated platelets: overview in clinical medicine]. 2008 Nippon Naika Gakkai Zasshi pmid:18363212
Chung FY et al. Signaling mechanisms of sphingosine 1-phosphate-induced ERK1/2 activation in cultured feline esophageal smooth muscle cells. 2008 Arch. Pharm. Res. pmid:19023540
Osborne N et al. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. 2008 Curr. Biol. pmid:19062281
Szczepaniak WS et al. Sphingosine 1-phosphate rescues canine LPS-induced acute lung injury and alters systemic inflammatory cytokine production in vivo. 2008 Transl Res pmid:19010292
Serebrov VY et al. Functional activity of sphingomyelin cycle in rat liver in chronic toxic hepatitis. 2008 Bull. Exp. Biol. Med. pmid:19513367
Li MH et al. Induction of antiproliferative connective tissue growth factor expression in Wilms' tumor cells by sphingosine-1-phosphate receptor 2. 2008 Mol. Cancer Res. pmid:18922980
Rapizzi E et al. Sphingosine 1-phosphate differentially regulates proliferation of C2C12 reserve cells and myoblasts. 2008 Mol. Cell. Biochem. pmid:18454302
Son DJ et al. Enhanced release of sphingosine-1-phosphate from hypercholesterolemic platelets: role in development of hypercholesterolemic atherosclerosis. 2008 Prostaglandins Leukot. Essent. Fatty Acids pmid:18571912
Wang D et al. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells. 2008 Mol. Cancer Ther. pmid:18645009
Peavy RD and Metcalfe DD Understanding the mechanisms of anaphylaxis. 2008 Curr Opin Allergy Clin Immunol pmid:18596587
Cheon S et al. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells. 2008 Biochem. Biophys. Res. Commun. pmid:18602364
Ohkawa R et al. Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. 2008 Ann. Clin. Biochem. pmid:18583619
Takuwa Y et al. Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. 2008 Biochim. Biophys. Acta pmid:18472021
Takabe K et al. "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. 2008 Pharmacol. Rev. pmid:18552276
Facchinetti MM et al. Stratification of sphingosine kinase-1 expression and activity in rat kidney. 2008 Cells Tissues Organs (Print) pmid:18552482
Shida D et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. 2008 Cancer Res. pmid:18701480
Huang WR et al. [SphK-1/S1P signal pathway in CML cells]. 2008 Zhongguo Shi Yan Xue Ye Xue Za Zhi pmid:18718048
Serrano-Sanchez M et al. Signaling pathways involved in sphingosine kinase activation and sphingosine-1-phosphate release in rat myometrium in late pregnancy: role in the induction of cyclooxygenase 2. 2008 Endocrinology pmid:18723875
Ohama T et al. Sphingosine-1-phosphate enhances IL-1{beta}-induced COX-2 expression in mouse intestinal subepithelial myofibroblasts. 2008 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:18703638
Kihara A and Igarashi Y Production and release of sphingosine 1-phosphate and the phosphorylated form of the immunomodulator FTY720. 2008 Biochim. Biophys. Acta pmid:18555808
Kaya H et al. Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model? 2008 Fertil. Steril. pmid:17517398
Worrall D et al. Involvement of sphingosine kinase in plant cell signalling. 2008 Plant J. pmid:18557834
Heller R et al. Overlapping and distinct roles for PI3Kbeta and gamma isoforms in S1P-induced migration of human and mouse endothelial cells. 2008 Cardiovasc. Res. pmid:18558630
Levkau B Sphingosine-1-phosphate in the regulation of vascular tone: a finely tuned integration system of S1P sources, receptors, and vascular responsiveness. 2008 Circ. Res. pmid:18669929
Bollag WB Potential role of sphingosine 1-phosphate in the pathogenesis of rheumatoid arthritis. 2008 J. Lipid Res. pmid:18669980
Ohuchi H et al. Expression patterns of the lysophospholipid receptor genes during mouse early development. 2008 Dev. Dyn. pmid:18924241
Srinivasan S et al. Sphingosine-1-phosphate reduces CD4+ T-cell activation in type 1 diabetes through regulation of hypoxia-inducible factor short isoform I.1 and CD69. 2008 Diabetes pmid:18003758
Johann AM et al. Apoptotic cell-derived sphingosine-1-phosphate promotes HuR-dependent cyclooxygenase-2 mRNA stabilization and protein expression. 2008 J. Immunol. pmid:18178864
Oskeritzian CA et al. Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. 2008 Blood pmid:18178871
Oyama O et al. The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice. 2008 Cardiovasc. Res. pmid:18187460
Patschan S et al. Lipid mediators of autophagy in stress-induced premature senescence of endothelial cells. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18203850
Eskan MA et al. Sphingosine 1-phosphate 1 and TLR4 mediate IFN-beta expression in human gingival epithelial cells. 2008 J. Immunol. pmid:18209079
Sekiguchi M et al. Role of sphingosine 1-phosphate in the pathogenesis of Sjögren's syndrome. 2008 J. Immunol. pmid:18209090
Brunati AM et al. Cross-talk between PDGF and S1P signalling elucidates the inhibitory effect and potential antifibrotic action of the immunomodulator FTY720 in activated HSC-cultures. 2008 Biochim. Biophys. Acta pmid:18157950
Gingras D et al. Sphingosine-1-phosphate induces the association of membrane-type 1 matrix metalloproteinase with p130Cas in endothelial cells. 2008 FEBS Lett. pmid:18164686
Laviad EL et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. 2008 J. Biol. Chem. pmid:18165233
van der Giet M et al. Relevance and potential of sphingosine-1-phosphate in vascular inflammatory disease. 2008 Biol. Chem. pmid:18925828
Won J and Lee GH T-cell-targeted signaling inhibitors. 2008 Jan-Apr Int. Rev. Immunol. pmid:18300054
Vessey DA et al. Sphingosine can pre- and post-condition heart and utilizes a different mechanism from sphingosine 1-phosphate. 2008 Mar-Apr J. Biochem. Mol. Toxicol. pmid:18418901
Limaye V The role of sphingosine kinase and sphingosine-1-phosphate in the regulation of endothelial cell biology. 2008 May-Jun Endothelium pmid:18568950
Kawamori T et al. Role for sphingosine kinase 1 in colon carcinogenesis. 2009 FASEB J. pmid:18824518
Li Y and Yu KL [Advances in thrombin-protease-activated receptor 1-sphingosine 1-phosphate pathway during sepsis]. 2009 Zhongguo Wei Zhong Bing Ji Jiu Yi Xue pmid:19278594
He X et al. Quantitative analysis of sphingosine-1-phosphate by HPLC after napthalene-2,3-dicarboxaldehyde (NDA) derivatization. 2009 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:19285924
Kenagy RD et al. Proliferative capacity of vein graft smooth muscle cells and fibroblasts in vitro correlates with graft stenosis. 2009 J. Vasc. Surg. pmid:19307078
Salinas NR et al. Lung tumor development in the presence of sphingosine 1-phosphate agonist FTY720. 2009 Pathol. Oncol. Res. pmid:19214784
Choi SK et al. Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery. 2009 Cardiovasc. Res. pmid:19218288
Huang YL et al. Tyrosine sulphation of sphingosine 1-phosphate 1 (S1P1) is required for S1P-mediated cell migration in primary cultures of human umbilical vein endothelial cells. 2009 J. Biochem. pmid:19692429
Hashimoto T et al. Sphingosine kinase is induced in mouse 3T3-L1 cells and promotes adipogenesis. 2009 J. Lipid Res. pmid:19020339
Maeurer C et al. Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. 2009 Cell. Signal. pmid:19000755
Ikeda H et al. Sphingosine 1-phosphate regulates regeneration and fibrosis after liver injury via sphingosine 1-phosphate receptor 2. 2009 J. Lipid Res. pmid:18955732
Ranty ML et al. Ceramide production associated with retinal apoptosis after retinal detachment. 2009 Graefes Arch. Clin. Exp. Ophthalmol. pmid:18958490
Young N et al. Sphingosine-1-phosphate regulates glioblastoma cell invasiveness through the urokinase plasminogen activator system and CCN1/Cyr61. 2009 Mol. Cancer Res. pmid:19147534
Malchinkhuu E et al. Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. 2009 Mol. Biol. Cell pmid:19864456
Morris AJ et al. Blood relatives: dynamic regulation of bioactive lysophosphatidic acid and sphingosine-1-phosphate metabolism in the circulation. 2009 Trends Cardiovasc. Med. pmid:19818950
Tachikawa M et al. Lysophospholipids enhance taurine release from rat retinal vascular endothelial cells under hypoosmotic stress. 2009 Microvasc. Res. pmid:19804786
Liu X et al. Effect of sphingosine 1-phosphate on morphological and functional responses in endothelia and venules after scalding injury. 2009 Burns pmid:19520517
Okajima F et al. [Role of S1P in the lipoprotein-induced actions and their signaling mechanism]. 2009 Seikagaku pmid:19522297
Chang CL et al. S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells. 2009 Am. J. Physiol., Cell Physiol. pmid:19474291
Schulz C et al. Trafficking of murine hematopoietic stem and progenitor cells in health and vascular disease. 2009 Microcirculation pmid:19479622
Kimber I et al. Langerhans cell migration: not necessarily always at the center of the skin sensitization universe. 2009 J. Invest. Dermatol. pmid:19603050
Pyne NJ et al. New aspects of sphingosine 1-phosphate signaling in mammalian cells. 2009 Adv. Enzyme Regul. pmid:19534035
Michaud MD et al. Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells. 2009 Arterioscler. Thromb. Vasc. Biol. pmid:19423865
Mullershausen F et al. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. 2009 Nat. Chem. Biol. pmid:19430484
Tao R et al. Cardiomyocyte S1P1 receptor-mediated extracellular signal-related kinase signaling and desensitization. 2009 J. Cardiovasc. Pharmacol. pmid:19433984
Yang G et al. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. 2009 Am. J. Physiol. Endocrinol. Metab. pmid:19435851
Hofmann U et al. Protective effects of sphingosine-1-phosphate receptor agonist treatment after myocardial ischaemia-reperfusion. 2009 Cardiovasc. Res. pmid:19416991
Ader I et al. When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. 2009 Cancer Res. pmid:19383898
Okajima F et al. Anti-atherogenic actions of high-density lipoprotein through sphingosine 1-phosphate receptors and scavenger receptor class B type I. 2009 Endocr. J. pmid:18753704
Brinkmann V FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. 2009 Br. J. Pharmacol. pmid:19814729
Wojciak JM et al. The crystal structure of sphingosine-1-phosphate in complex with a Fab fragment reveals metal bridging of an antibody and its antigen. 2009 Proc. Natl. Acad. Sci. U.S.A. pmid:19815502
Jacobson JR Pharmacologic therapies on the horizon for acute lung injury/acute respiratory distress syndrome. 2009 J. Investig. Med. pmid:19820408
Jenne CN et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. 2009 J. Exp. Med. pmid:19808259
Long DA and Price KL Sphingosine kinase-1: a potential mediator of renal fibrosis. 2009 Kidney Int. pmid:19789541
Bedia C et al. Synthesis of a fluorogenic analogue of sphingosine-1-phosphate and its use to determine sphingosine-1-phosphate lyase activity. 2009 Chembiochem pmid:19226506
Rodgers A et al. Sphingosine 1-phosphate regulation of extracellular signal-regulated kinase-1/2 in embryonic stem cells. 2009 Stem Cells Dev. pmid:19228106
Gellings Lowe N et al. Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts. 2009 Cardiovasc. Res. pmid:19228708
Garcia JG Concepts in microvascular endothelial barrier regulation in health and disease. 2009 Microvasc. Res. pmid:19232241
Igarashi J and Michel T Sphingosine-1-phosphate and modulation of vascular tone. 2009 Cardiovasc. Res. pmid:19233865
Chien CC et al. Activation of telomerase and cyclooxygenase-2 in PDGF and FGF inhibition of C2-ceramide-induced apoptosis. 2009 J. Cell. Physiol. pmid:18932216
Estrada R et al. Ligand-induced nuclear translocation of S1P(1) receptors mediates Cyr61 and CTGF transcription in endothelial cells. 2009 Histochem. Cell Biol. pmid:18936953
Maceyka M et al. Sphingosine-1-phosphate: the Swiss army knife of sphingolipid signaling. 2009 J. Lipid Res. pmid:18987387