Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Peripheral Arterial Disease D058729 7 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Farber Lipogranulomatosis D055577 1 associated lipids
Acute Lung Injury D055371 33 associated lipids
Lung Injury D055370 14 associated lipids
Niemann-Pick Disease, Type C D052556 1 associated lipids
Atherosclerosis D050197 85 associated lipids
Ileus D045823 3 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Endotoxemia D019446 27 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Teratocarcinoma D018243 7 associated lipids
Weight Gain D015430 101 associated lipids
Reperfusion Injury D015427 65 associated lipids
Vascular Diseases D014652 16 associated lipids
Tuberculosis D014376 20 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Thrombocytopenia D013921 15 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Sensation Disorders D012678 2 associated lipids
Sarcoma 180 D012510 21 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Retinal Detachment D012163 10 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Pulmonary Edema D011654 23 associated lipids
Psoriasis D011565 47 associated lipids
Proteinuria D011507 30 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Pain D010146 64 associated lipids
Ovarian Diseases D010049 5 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Neuroblastoma D009447 66 associated lipids
Neuralgia D009437 28 associated lipids
Nerve Degeneration D009410 53 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Li Y et al. Interaction of cortactin and Arp2/3 complex is required for sphingosine-1-phosphate-induced endothelial cell remodeling. 2004 Exp. Cell Res. pmid:15242766
Takeya H ['Vegetable wasps and plant worms' and G-protein-coupled receptors]. 2004 J. UOEH pmid:15244075
Barnes PJ Ceramide lances the lungs. 2004 Nat. Med. pmid:14760419
Jolly PS et al. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. 2004 J. Exp. Med. pmid:15067032
Segura BJ et al. Sphingosine-1-phosphate mediates calcium signaling in guinea pig enteroglial cells. 2004 J. Surg. Res. pmid:14732348
Sanna MG et al. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. 2004 J. Biol. Chem. pmid:14732717
Forrest M et al. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. 2004 J. Pharmacol. Exp. Ther. pmid:14747617
Yue J et al. Mice with transgenic overexpression of lipid phosphate phosphatase-1 display multiple organotypic deficits without alteration in circulating lysophosphatidate level. 2004 Cell. Signal. pmid:14687668
Harada J et al. Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. 2004 J. Neurochem. pmid:14756825
Matloubian M et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. 2004 Nature pmid:14737169
Monick MM et al. Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus. 2004 Am. J. Respir. Cell Mol. Biol. pmid:14742298
Kim DS et al. Sphingosine-1-phosphate inhibits human keratinocyte proliferation via Akt/protein kinase B inactivation. 2004 Cell. Signal. pmid:14607279
Shimamura K et al. Expression of adhesion molecules by sphingosine 1-phosphate and histamine in endothelial cells. 2004 Eur. J. Pharmacol. pmid:14975703
Tokumura A Metabolic pathways and physiological and pathological significances of lysolipid phosphate mediators. 2004 J. Cell. Biochem. pmid:15258912
Muehlich S et al. Induction of connective tissue growth factor (CTGF) in human endothelial cells by lysophosphatidic acid, sphingosine-1-phosphate, and platelets. 2004 Atherosclerosis pmid:15262182
Kohno T and Igarashi Y Roles for N-glycosylation in the dynamics of Edg-1/S1P1 in sphingosine 1-phosphate-stimulated cells. 2004 Glycoconj. J. pmid:15750791
Linz-McGillem LA et al. Cytoskeletal rearrangement and caspase activation in sphingosine 1-phosphate-induced lung capillary tube formation. 2004 Stem Cells Dev. pmid:15588507
Barber SC et al. S1P and LPA trigger Schwann cell actin changes and migration. 2004 Eur. J. Neurosci. pmid:15217370
Levkau B et al. High-density lipoprotein stimulates myocardial perfusion in vivo. 2004 Circulation pmid:15545521
Hale JJ et al. A rational utilization of high-throughput screening affords selective, orally bioavailable 1-benzyl-3-carboxyazetidine sphingosine-1-phosphate-1 receptor agonists. 2004 J. Med. Chem. pmid:15615513
Langlois S et al. Membrane type 1-matrix metalloproteinase (MT1-MMP) cooperates with sphingosine 1-phosphate to induce endothelial cell migration and morphogenic differentiation. 2004 Blood pmid:15070679
Ochi S et al. Clostridium perfringens alpha-toxin activates the sphingomyelin metabolism system in sheep erythrocytes. 2004 J. Biol. Chem. pmid:14702348
Hammer S et al. Glucocorticoids mediate differential anti-apoptotic effects in human fibroblasts and keratinocytes via sphingosine-1-phosphate formation. 2004 J. Cell. Biochem. pmid:14991774
Tokuda H et al. Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. 2004 J. Cell. Biochem. pmid:15034939
Goetzl EJ and Gräler MH Sphingosine 1-phosphate and its type 1 G protein-coupled receptor: trophic support and functional regulation of T lymphocytes. 2004 J. Leukoc. Biol. pmid:14982946
Fukuda Y et al. Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. 2004 Biochim. Biophys. Acta pmid:14984734
Tanimoto T et al. Sphingosine 1-phosphate transactivates the platelet-derived growth factor beta receptor and epidermal growth factor receptor in vascular smooth muscle cells. 2004 Circ. Res. pmid:15044318
vom Dorp F et al. Inhibition of phospholipase C-epsilon by Gi-coupled receptors. 2004 Cell. Signal. pmid:15157671
Lockman K et al. Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. 2004 J. Biol. Chem. pmid:15292266
Nakamura H et al. Effects of synthetic sphingosine-1-phosphate analogs on arachidonic acid metabolism and cell death. 2004 Biochem. Pharmacol. pmid:15498509
Billich A and Ettmayer P Fluorescence-based assay of sphingosine kinases. 2004 Anal. Biochem. pmid:14769343
Nosi D et al. Effects of S1P on myoblastic cell contraction: possible involvement of Ca-independent mechanisms. 2004 Cells Tissues Organs (Print) pmid:15655330
Mo FM et al. Atypical cannabinoid stimulates endothelial cell migration via a Gi/Go-coupled receptor distinct from CB1, CB2 or EDG-1. 2004 Eur. J. Pharmacol. pmid:15063151
Elices MJ Editorial overview: Tie me up, tie me down: immunosuppressive therapies for the 21st century. 2004 Curr Opin Investig Drugs pmid:15573862
Yu N et al. Characterization of lysophosphatidic acid and sphingosine-1-phosphate-mediated signal transduction in rat cortical oligodendrocytes. 2004 Glia pmid:14648542
Formigli L et al. Sphingosine 1-phosphate induces cell contraction via calcium-independent/Rho-dependent pathways in undifferentiated skeletal muscle cells. 2004 J. Cell. Physiol. pmid:14584038
Argraves KM et al. Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis. 2004 J. Biol. Chem. pmid:15377653
Grey A et al. Osteoblastic cells express phospholipid receptors and phosphatases and proliferate in response to sphingosine-1-phosphate. 2004 Calcif. Tissue Int. pmid:15354862
Xu CB et al. Sphingosine signaling and atherogenesis. 2004 Acta Pharmacol. Sin. pmid:15210056
Yokoo E et al. Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via S1P2: cross-talk between platelets and mast cells. 2004 J. Biochem. pmid:15213242
Pierre SC et al. PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. 2004 EMBO J. pmid:15257286
McVerry BJ and Garcia JG Endothelial cell barrier regulation by sphingosine 1-phosphate. 2004 J. Cell. Biochem. pmid:15258893
Karliner JS Mechanisms of cardioprotection by lysophospholipids. 2004 J. Cell. Biochem. pmid:15258895
Goetzl EJ et al. Sphingosine 1-phosphate and its G protein-coupled receptors constitute a multifunctional immunoregulatory system. 2004 J. Cell. Biochem. pmid:15258896
Le Stunff H et al. Generation and metabolism of bioactive sphingosine-1-phosphate. 2004 J. Cell. Biochem. pmid:15258913
Duan HF et al. Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells. 2004 Exp. Cell Res. pmid:15265705
Melendez AJ and Ibrahim FB Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production, and chemotaxis. 2004 J. Immunol. pmid:15265887
Deretic D et al. Phosphoinositides, ezrin/moesin, and rac1 regulate fusion of rhodopsin transport carriers in retinal photoreceptors. 2004 Mol. Biol. Cell pmid:13679519
Ikeda H et al. Sphingosine 1-phosphate enhances portal pressure in isolated perfused liver via S1P2 with Rho activation. 2004 Biochem. Biophys. Res. Commun. pmid:15240112
Misasi R et al. Prosaposin: a new player in cell death prevention of U937 monocytic cells. 2004 Exp. Cell Res. pmid:15242760