Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Peripheral Arterial Disease D058729 7 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Farber Lipogranulomatosis D055577 1 associated lipids
Acute Lung Injury D055371 33 associated lipids
Lung Injury D055370 14 associated lipids
Niemann-Pick Disease, Type C D052556 1 associated lipids
Atherosclerosis D050197 85 associated lipids
Ileus D045823 3 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Endotoxemia D019446 27 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Teratocarcinoma D018243 7 associated lipids
Weight Gain D015430 101 associated lipids
Reperfusion Injury D015427 65 associated lipids
Vascular Diseases D014652 16 associated lipids
Tuberculosis D014376 20 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Thrombocytopenia D013921 15 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Sensation Disorders D012678 2 associated lipids
Sarcoma 180 D012510 21 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Retinal Detachment D012163 10 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Pulmonary Edema D011654 23 associated lipids
Psoriasis D011565 47 associated lipids
Proteinuria D011507 30 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Pain D010146 64 associated lipids
Ovarian Diseases D010049 5 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Neuroblastoma D009447 66 associated lipids
Neuralgia D009437 28 associated lipids
Nerve Degeneration D009410 53 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Kihara A [Multifunctional sphingolipid, sphingosine (long-chain base) 1-phosphate: physiological role, metabolism, and intracellular dynamics]. 2006 Seikagaku pmid:16986722
Birgbauer E and Chun J New developments in the biological functions of lysophospholipids. 2006 Cell. Mol. Life Sci. pmid:16988788
Ryu J et al. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. 2006 EMBO J. pmid:17124500
Jin YX et al. Sphingosine kinase assay system with fluorescent detection in high performance liquid chromatography. 2006 Arch. Pharm. Res. pmid:17146975
Taha TA et al. A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. 2006 Biochim. Biophys. Acta pmid:17161984
Fisher KE et al. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling. 2006 Mol. Cancer pmid:17156449
Huwiler A and Pfeilschifter J Altering the sphingosine-1-phosphate/ceramide balance: a promising approach for tumor therapy. 2006 Curr. Pharm. Des. pmid:17168766
Pan S et al. A monoselective sphingosine-1-phosphate receptor-1 agonist prevents allograft rejection in a stringent rat heart transplantation model. 2006 Chem. Biol. pmid:17114004
Malaplate-Armand C et al. Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. 2006 Neurobiol. Dis. pmid:16626961
Hiraga Y et al. Changes in S1P1 and S1P2 expression during embryonal development and primitive endoderm differentiation of F9 cells. 2006 Biochem. Biophys. Res. Commun. pmid:16631609
French KJ et al. Antitumor activity of sphingosine kinase inhibitors. 2006 J. Pharmacol. Exp. Ther. pmid:16632640
Milstien S and Spiegel S Targeting sphingosine-1-phosphate: a novel avenue for cancer therapeutics. 2006 Cancer Cell pmid:16530698
Visentin B et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. 2006 Cancer Cell pmid:16530706
Scherer EQ et al. Sphingosine-1-phosphate modulates spiral modiolar artery tone: A potential role in vascular-based inner ear pathologies? 2006 Cardiovasc. Res. pmid:16533504
Rouach N et al. S1P inhibits gap junctions in astrocytes: involvement of G and Rho GTPase/ROCK. 2006 Eur. J. Neurosci. pmid:16553609
Brizuela L et al. Sphingosine 1-phosphate: a novel stimulator of aldosterone secretion. 2006 J. Lipid Res. pmid:16554657
Chatterjee S et al. The role of the phospholipid sphingomyelin in heart disease. 2006 Curr Opin Investig Drugs pmid:16555682
Zeidan YH et al. Acid ceramidase but not acid sphingomyelinase is required for tumor necrosis factor-{alpha}-induced PGE2 production. 2006 J. Biol. Chem. pmid:16803890
Dindo D et al. Cationic long-chain ceramide LCL-30 induces cell death by mitochondrial targeting in SW403 cells. 2006 Mol. Cancer Ther. pmid:16818511
Durand CA et al. The Rap GTPases mediate CXCL13- and sphingosine1-phosphate-induced chemotaxis, adhesion, and Pyk2 tyrosine phosphorylation in B lymphocytes. 2006 Eur. J. Immunol. pmid:16821235
Giussani P et al. Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. 2006 Mol. Cell. Biol. pmid:16782891
Sanna MG et al. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. 2006 Nat. Chem. Biol. pmid:16829954
Veracini L et al. Two distinct pools of Src family tyrosine kinases regulate PDGF-induced DNA synthesis and actin dorsal ruffles. 2006 J. Cell. Sci. pmid:16787943
Hemmings DG et al. Sphingosine-1-phosphate acts via rho-associated kinase and nitric oxide to regulate human placental vascular tone. 2006 Biol. Reprod. pmid:16162874
Yamashita H et al. Sphingosine 1-phosphate receptor expression profile in human gastric cancer cells: differential regulation on the migration and proliferation. 2006 J. Surg. Res. pmid:16183075
Sparkman L et al. Ceramide decreases surfactant protein B gene expression via downregulation of TTF-1 DNA binding activity. 2006 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:16183668
Ozbay T et al. Cyclic adenosine 5'-monophosphate-dependent sphingosine-1-phosphate biosynthesis induces human CYP17 gene transcription by activating cleavage of sterol regulatory element binding protein 1. 2006 Endocrinology pmid:16306078
Park KS et al. Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G-proteins. 2006 Mol. Pharmacol. pmid:16368894
Kim MY et al. Sphingosine-1-phosphate activates BKCa channels independently of G protein-coupled receptor in human endothelial cells. 2006 Am. J. Physiol., Cell Physiol. pmid:16267108
di Villa Bianca Rd et al. Sphingosine 1-phosphate induces endothelial nitric-oxide synthase activation through phosphorylation in human corpus cavernosum. 2006 J. Pharmacol. Exp. Ther. pmid:16234413
Bu S et al. Dihydrosphingosine 1-phosphate stimulates MMP1 gene expression via activation of ERK1/2-Ets1 pathway in human fibroblasts. 2006 FASEB J. pmid:16278291
Inniss K and Moore H Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate. 2006 Stem Cells Dev. pmid:17253942
Matsuyuki H et al. Involvement of sphingosine 1-phosphate (S1P) receptor type 1 and type 4 in migratory response of mouse T cells toward S1P. 2006 Cell. Mol. Immunol. pmid:17257496
Kang JS et al. Glabridin suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking sphingosine kinase pathway: implications of Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB/Rel signaling pathways. 2006 Mol. Pharmacol. pmid:16354764
Donati C and Bruni P Sphingosine 1-phosphate regulates cytoskeleton dynamics: implications in its biological response. 2006 Biochim. Biophys. Acta pmid:16890187
Thompson B et al. Protein kinase Calpha and sphingosine 1-phosphate-dependent signaling in endothelial cell. 2006 Prostaglandins Other Lipid Mediat. pmid:16846783
Long JS et al. The functional PDGFbeta receptor-S1P1 receptor signaling complex is involved in regulating migration of mouse embryonic fibroblasts in response to platelet derived growth factor. 2006 Prostaglandins Other Lipid Mediat. pmid:16846788
Nagata Y et al. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. 2006 J. Cell Biol. pmid:16847102
Xu R et al. Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. 2006 FASEB J. pmid:16940153
Schultz C Lipid-induced phenotypes. 2006 Nat. Chem. Biol. pmid:16850012
Brinkmann V and Baumruker T Pulmonary and vascular pharmacology of sphingosine 1-phosphate. 2006 Curr Opin Pharmacol pmid:16563863
Hemmings DG Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. 2006 Naunyn Schmiedebergs Arch. Pharmacol. pmid:16570136
Choueiri TK et al. Phenoxodiol: isoflavone analog with antineoplastic activity. 2006 Curr Oncol Rep pmid:16507219
Naetzker S et al. Activation of p38 mitogen-activated protein kinase and partial reactivation of the cell cycle by cis-4-methylsphingosine direct postmitotic neurons towards apoptosis. 2006 Genes Cells pmid:16483315
Jurisicova A et al. Molecular requirements for doxorubicin-mediated death in murine oocytes. 2006 Cell Death Differ. pmid:16439991
Bassi R et al. Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors. 2006 Glia pmid:16470810
Yatomi Y Sphingosine 1-phosphate in vascular biology: possible therapeutic strategies to control vascular diseases. 2006 Curr. Pharm. Des. pmid:16472149
Kurobe H et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. 2006 Immunity pmid:16473829
Kitano M et al. Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: regulation of synovial proliferation and inflammatory gene expression. 2006 Arthritis Rheum. pmid:16508938
Hsieh HL et al. Sphingosine-1-phosphate induces COX-2 expression via PI3K/Akt and p42/p44 MAPK pathways in rat vascular smooth muscle cells. 2006 J. Cell. Physiol. pmid:16508949