Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Sarcoma 180 D012510 21 associated lipids
Edema D004487 152 associated lipids
Arthritis D001168 41 associated lipids
Heart Failure D006333 36 associated lipids
Pulmonary Edema D011654 23 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypersensitivity D006967 22 associated lipids
Acne Vulgaris D000152 35 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Melanoma D008545 69 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Asthma D001249 52 associated lipids
Weight Gain D015430 101 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Proteinuria D011507 30 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Fibrosis D005355 23 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Psoriasis D011565 47 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Radi ZA and Vogel MW Gastric parietal cell atrophy and depletion after administration of a sphingosine-1-phosphate 1 inhibitor. 2014 Toxicol Pathol pmid:24178572
Nagata Y et al. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation. 2014 Exp. Cell Res. pmid:24960577
Ceccom J et al. [Sphingosine 1-phosphate as a biomarker for Alzheimer's disease?]. 2014 Med Sci (Paris) pmid:24939530
Tibboel J et al. Sphingolipids in lung growth and repair. 2014 Chest pmid:24394822
Barnes J and Dweik RA Is pulmonary hypertension a metabolic disease? 2014 Am. J. Respir. Crit. Care Med. pmid:25360726
Chen J et al. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. 2014 PLoS Genet. pmid:25356849
Arnon TI and Cyster JG Blood, sphingosine-1-phosphate and lymphocyte migration dynamics in the spleen. 2014 Curr. Top. Microbiol. Immunol. pmid:24728595
Oldstone MB and Rosen H Cytokine storm plays a direct role in the morbidity and mortality from influenza virus infection and is chemically treatable with a single sphingosine-1-phosphate agonist molecule. 2014 Curr. Top. Microbiol. Immunol. pmid:24728596
Martin R and Sospedra M Sphingosine-1 phosphate and central nervous system. 2014 Curr. Top. Microbiol. Immunol. pmid:24728597
Nagahashi M et al. Sphingosine-1-phosphate transporters as targets for cancer therapy. 2014 Biomed Res Int pmid:25133174
Nguyen AV et al. STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer. 2014 World J. Gastroenterol. pmid:25132744
Fayyaz S et al. Divergent role of sphingosine 1-phosphate on insulin resistance. 2014 Cell. Physiol. Biochem. pmid:24977487
Rahman MM et al. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids. 2014 PLoS ONE pmid:24647471
Halmer R et al. Sphingolipids: important players in multiple sclerosis. 2014 Cell. Physiol. Biochem. pmid:24977485
Park SM et al. Sphingosine-1-phosphate lyase is expressed by CD68+ cells on the parenchymal side of marginal reticular cells in human lymph nodes. 2014 Eur. J. Immunol. pmid:24825162
Arlt O et al. Sphingosine-1-phosphate modulates dendritic cell function: focus on non-migratory effects in vitro and in vivo. 2014 Cell. Physiol. Biochem. pmid:24977479
Simmons S and Ishii M Sphingosine-1-phosphate: a master regulator of lymphocyte egress and immunity. 2014 Arch. Immunol. Ther. Exp. (Warsz.) pmid:24276789
Sykes DA et al. Investigating the molecular mechanisms through which FTY720-P causes persistent S1P1 receptor internalization. 2014 Br. J. Pharmacol. pmid:24641481
Zhang J and Song J Amphiphilic degradable polymers for immobilization and sustained delivery of sphingosine 1-phosphate. 2014 Acta Biomater pmid:24631657
Priceman SJ et al. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. 2014 Cell Rep pmid:24630990
Egom EE Sphingosine-1-phosphate signalling as a therapeutic target for patients with abnormal glucose metabolism and ischaemic heart disease. 2014 J Cardiovasc Med (Hagerstown) pmid:23839592
Cencetti F et al. Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis. 2014 FEBS J. pmid:25131845
Lee H et al. 4-Deoxypyridoxine improves the viability of isolated pancreatic islets ex vivo. 2013 May-Jun Islets pmid:23756681
Egom EE et al. Activation of sphingosine-1-phosphate signalling as a potential underlying mechanism of the pleiotropic effects of statin therapy. 2013 May-Jun Crit Rev Clin Lab Sci pmid:23885725
Ratajczak MZ et al. An emerging link in stem cell mobilization between activation of the complement cascade and the chemotactic gradient of sphingosine-1-phosphate. 2013 Jul-Aug Prostaglandins Other Lipid Mediat. pmid:22981511
Morozov VI et al. Sphingosine-1-phosphate: distribution, metabolism and role in the regulation of cellular functions. 2013 Jan-Feb Ukr Biokhim Zh (1999) pmid:23534286
Abuhusain HJ et al. A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. 2013 J. Biol. Chem. pmid:24265321
Bolli MH et al. Novel S1P1 receptor agonists--part 1: From pyrazoles to thiophenes. 2013 J. Med. Chem. pmid:24266709
Xiang SY et al. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. 2013 Biochim. Biophys. Acta pmid:22986288
Gaveglio VL et al. Phosphatidic acid metabolism in rat liver cell nuclei. 2013 FEBS Lett. pmid:23439070
Harijith A et al. Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins. 2013 Am. J. Pathol. pmid:23933064
Cortez-Retamozo V et al. Angiotensin II drives the production of tumor-promoting macrophages. 2013 Immunity pmid:23333075
García-Bernal D et al. Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving α4β1 integrin function. 2013 J. Pathol. pmid:22711564
Takuwa Y et al. Sphingosine-1-phosphate as a mediator involved in development of fibrotic diseases. 2013 Biochim. Biophys. Acta pmid:22735357
Olivera A et al. Shaping the landscape: metabolic regulation of S1P gradients. 2013 Biochim. Biophys. Acta pmid:22735358
Polzin A et al. Aspirin inhibits release of platelet-derived sphingosine-1-phosphate in acute myocardial infarction. 2013 Int. J. Cardiol. pmid:24169533
Kunkel GT et al. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. 2013 Nat Rev Drug Discov pmid:23954895
Loetscher E et al. Assay to measure the secretion of sphingosine-1-phosphate from cells induced by S1P lyase inhibitors. 2013 Biochem. Biophys. Res. Commun. pmid:23499842
Moriue T et al. Sphingosine 1-phosphate attenuates peroxide-induced apoptosis in HaCaT cells cultured in vitro. 2013 Clin. Exp. Dermatol. pmid:23837937
Goyal P et al. Cytokine IL-6 secretion by trophoblasts regulated via sphingosine-1-phosphate receptor 2 involving Rho/Rho-kinase and Rac1 signaling pathways. 2013 Mol. Hum. Reprod. pmid:23538947
Karapetyan AV et al. Bioactive lipids and cationic antimicrobial peptides as new potential regulators for trafficking of bone marrow-derived stem cells in patients with acute myocardial infarction. 2013 Stem Cells Dev. pmid:23282236
Kleinjan A et al. Topical treatment targeting sphingosine-1-phosphate and sphingosine lyase abrogates experimental allergic rhinitis in a murine model. 2013 Allergy pmid:23253209
Kager LM et al. Endogenous protein C has a protective role during Gram-negative pneumosepsis (melioidosis). 2013 J. Thromb. Haemost. pmid:23216621
Matsuzaki E et al. Sphingosine-1-phosphate promotes the nuclear translocation of β-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. 2013 Bone pmid:23612487
Cartwright TA et al. Mrp1 is essential for sphingolipid signaling to p-glycoprotein in mouse blood-brain and blood-spinal cord barriers. 2013 J. Cereb. Blood Flow Metab. pmid:23168528
Guo H et al. An activated protein C analog stimulates neuronal production by human neural progenitor cells via a PAR1-PAR3-S1PR1-Akt pathway. 2013 J. Neurosci. pmid:23554499
Nguyen DH et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23569284
Alberg AJ et al. Plasma sphingolipids and lung cancer: a population-based, nested case-control study. 2013 Cancer Epidemiol. Biomarkers Prev. pmid:23749868
Willis MA and Cohen JA Fingolimod therapy for multiple sclerosis. 2013 Semin Neurol pmid:23709211
Tatematsu S et al. Endothelial lipase is a critical determinant of high-density lipoprotein-stimulated sphingosine 1-phosphate-dependent signaling in vascular endothelium. 2013 Arterioscler. Thromb. Vasc. Biol. pmid:23723371