Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Lung Neoplasms D008175 171 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Pyne NJ et al. Sphingosine 1-phosphate signalling in cancer. 2012 Biochem. Soc. Trans. pmid:22260672
Jin YX et al. A strategy for enrichment of the bioactive sphingoid base-1-phosphates produced by Hypericum perforatum L. in a balloon type airlift reactor. 2012 Bioresour. Technol. pmid:22940331
Snider AJ et al. Loss of neutral ceramidase increases inflammation in a mouse model of inflammatory bowel disease. 2012 Prostaglandins Other Lipid Mediat. pmid:22940715
Moon MH et al. Sphingosine-1-phosphate inhibits interleukin-1β-induced inflammation in human articular chondrocytes. 2012 Int. J. Mol. Med. pmid:22992945
Wang S et al. A polysaccharides MDG-1 augments survival in the ischemic heart by inducing S1P release and S1P1 expression. 2012 Int. J. Biol. Macromol. pmid:22197795
Armstrong SM et al. Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac. 2012 Am. J. Pathol. pmid:22203054
Bode C and Gräler MH Immune regulation by sphingosine 1-phosphate and its receptors. 2012 Arch. Immunol. Ther. Exp. (Warsz.) pmid:22159476
Cyster JG and Schwab SR Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. 2012 Annu. Rev. Immunol. pmid:22149932
Kurata H et al. Structure-activity relationship studies of S1P agonists with a dihydronaphthalene scaffold. 2012 Bioorg. Med. Chem. Lett. pmid:22153936
Calise S et al. Sphingosine 1-phosphate stimulates proliferation and migration of satellite cells: role of S1P receptors. 2012 Biochim. Biophys. Acta pmid:22178384
Balczerski B et al. Analysis of sphingosine-1-phosphate signaling mutants reveals endodermal requirements for the growth but not dorsoventral patterning of jaw skeletal precursors. 2012 Dev. Biol. pmid:22185793
Witt W et al. Sphingosine-1-phosphate induces contraction of valvular interstitial cells from porcine aortic valves. 2012 Cardiovasc. Res. pmid:22232739
Madhunapantula SV et al. Targeting sphingosine kinase-1 to inhibit melanoma. 2012 Pigment Cell Melanoma Res pmid:22236408
Che W et al. Sphingosine 1-phosphate induces MKP-1 expression via p38 MAPK- and CREB-mediated pathways in airway smooth muscle cells. 2012 Biochim. Biophys. Acta pmid:22743041
Testai FD et al. Changes in the cerebrospinal fluid ceramide profile after subarachnoid hemorrhage. 2012 Stroke pmid:22713492
García-Merino JA and Sánchez AJ [Basic mechanisms of action of fingolimod in relation to multiple sclerosis]. 2012 Rev Neurol pmid:22718407
Hisano Y et al. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. 2012 PLoS ONE pmid:22723910
Chiba K and Yoshii N [Pharmacological properties and clinical efficacy of fingolimod hydrochloride (Imusera®/Gilenya®) for the treatment of multiple sclerosis]. 2012 Nippon Yakurigaku Zasshi pmid:22728990
Linke B et al. Analysis of sphingolipid and prostaglandin synthesis during zymosan-induced inflammation. 2012 Prostaglandins Other Lipid Mediat. pmid:22732087
Yokoyama K et al. Decrease of serum sphingosine-1-phosphate levels in hemodialysis patients with secondary hyperparathyroidism treated with cinacalcet. 2012 Clin. Nephrol. pmid:22732343
Sun DF et al. Sphingosine 1-phosphate antagonizes the effect of all-trans retinoic acid (ATRA) in a human colon cancer cell line by modulation of RARβ expression. 2012 Cancer Lett. pmid:22261335
Park SW et al. Inhibition of sphingosine 1-phosphate receptor 2 protects against renal ischemia-reperfusion injury. 2012 J. Am. Soc. Nephrol. pmid:22095950
Duru EA et al. Role of S-1-P receptors and human vascular smooth muscle cell migration in diabetes and metabolic syndrome. 2012 J. Surg. Res. pmid:22480845
Moberly JB et al. Pharmacological effects of CS-0777, a selective sphingosine 1-phosphate receptor-1 modulator: results from a 12-week, open-label pilot study in multiple sclerosis patients. 2012 J. Neuroimmunol. pmid:22465063
Li Q et al. The reduction of allograft arteriosclerosis in intestinal transplant is associated with sphingosine kinase 1/sphingosine-1-phosphate signaling after fish oil treatment. 2012 Transplantation pmid:22466786
von Bismarck P et al. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. 2012 Pulm Pharmacol Ther pmid:22469869
El-Shewy HM et al. Low-density lipoprotein induced expression of connective tissue growth factor via transactivation of sphingosine 1-phosphate receptors in mesangial cells. 2012 Mol. Endocrinol. pmid:22422617
Eisenhoffer GT et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. 2012 Nature pmid:22504183
Peng P et al. [Effect of sphingosine-1-phosphate on chemotherapy-induced ovarian damage and on the efficacy of chemotherapy in mice bearing S180 tumor]. 2012 Nan Fang Yi Ke Da Xue Xue Bao pmid:22445989
Podbielska M et al. Signaling and regulatory functions of bioactive sphingolipids as therapeutic targets in multiple sclerosis. 2012 Neurochem. Res. pmid:22451227
Altay O et al. Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice. 2012 Crit. Care Med. pmid:22488000
Tian YL et al. [Research progress of the selective sphingosine-1-phosphate receptor 1 agonists]. 2012 Yao Xue Xue Bao pmid:22493799
Makino Y et al. Role of sphingosine-1-phosphate inβ-adrenoceptor desensitization via Ca(2+) sensitization in airway smooth muscle. 2012 Allergol Int pmid:22441633
Shi Y et al. Sphingosine kinase-2 inhibition improves mitochondrial function and survival after hepatic ischemia-reperfusion. 2012 J. Hepatol. pmid:21756852
Spiegel S et al. Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy. 2012 Oncogene pmid:21725353
Krishna SM et al. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. 2012 Am. J. Pathol. pmid:22698985
Lee SH et al. Higher circulating sphingosine 1-phosphate levels are associated with lower bone mineral density and higher bone resorption marker in humans. 2012 J. Clin. Endocrinol. Metab. pmid:22679064
Kim CH et al. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. 2012 Leukemia pmid:21769103
Obinata H and Hla T Sphingosine 1-phosphate in coagulation and inflammation. 2012 Semin Immunopathol pmid:21805322
Tencé M et al. Increased interaction of connexin43 with zonula occludens-1 during inhibition of gap junctions by G protein-coupled receptor agonists. 2012 Cell. Signal. pmid:21872657
Beech DJ Integration of transient receptor potential canonical channels with lipids. 2012 Acta Physiol (Oxf) pmid:21624095
Kipp M and Amor S FTY720 on the way from the base camp to the summit of the mountain: relevance for remyelination. 2012 Mult. Scler. pmid:22383435
Fujii Y et al. Blocking S1P interaction with S1P₁ receptor by a novel competitive S1P₁-selective antagonist inhibits angiogenesis. 2012 Biochem. Biophys. Res. Commun. pmid:22387544
Cantrell Stanford J et al. Sphingosine 1-phosphate (S1P) regulates glucose-stimulated insulin secretion in pancreatic beta cells. 2012 J. Biol. Chem. pmid:22389505
Liu W et al. S1P2 receptor mediates sphingosine-1-phosphate-induced fibronectin expression via MAPK signaling pathway in mesangial cells under high glucose condition. 2012 Exp. Cell Res. pmid:22406263
Fukuhara S et al. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. 2012 J. Clin. Invest. pmid:22406534
Yang F et al. Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis. 2012 Cancer Biol. Ther. pmid:22406995
Kwak HI et al. Calpain-mediated vimentin cleavage occurs upstream of MT1-MMP membrane translocation to facilitate endothelial sprout initiation. 2012 Angiogenesis pmid:22407449
Singh AT et al. Sphingosine-sphingosine-1-phosphate pathway regulates trophoblast differentiation and syncytialization. 2012 Reprod. Biomed. Online pmid:22197131
Pitman MR et al. Molecular targets of FTY720 (fingolimod). 2012 Curr. Mol. Med. pmid:22834825
Karmouty-Quintana H et al. Treatment with a sphingosine-1-phosphate analog inhibits airway remodeling following repeated allergen exposure. 2012 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:22287614
Curry FE et al. Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels. 2012 Am. J. Physiol. Heart Circ. Physiol. pmid:22865384
Masuko K et al. Sphingosine-1-phosphate modulates expression of vascular endothelial growth factor in human articular chondrocytes: a possible new role in arthritis. 2012 Int J Rheum Dis pmid:22898216
Schmitz EI et al. Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P₃. 2012 Mol. Cell. Biochem. pmid:22899173
Egom EE A therapeutic approach to hyperglycaemia in the setting of acute myocardial infarction: spotlight on glucagon-like peptide 1. 2012 Ther Adv Cardiovasc Dis pmid:22902834
Liu Q et al. Inhibition of sphingosine kinase-2 suppresses inflammation and attenuates graft injury after liver transplantation in rats. 2012 PLoS ONE pmid:22848628
Bassoy EY and Baran Y Bioactive sphingolipids in docetaxel-induced apoptosis in human prostate cancer cells. 2012 Biomed. Pharmacother. pmid:22326625
Asghar MY et al. Sphingosine 1-phosphate and human ether-a'-go-go-related gene potassium channels modulate migration in human anaplastic thyroid cancer cells. 2012 Endocr. Relat. Cancer pmid:22889737
Beckham TH et al. Acid ceramidase-mediated production of sphingosine 1-phosphate promotes prostate cancer invasion through upregulation of cathepsin B. 2012 Int. J. Cancer pmid:22322590
Törnquist K Sphingosine 1-phosphate, sphingosine kinase and autocrine calcium signalling in thyroid cells. 2012 Acta Physiol (Oxf) pmid:21338471
Babahosseini H et al. Roles of bioactive sphingolipid metabolites in ovarian cancer cell biomechanics. 2012 Conf Proc IEEE Eng Med Biol Soc pmid:23366417
Salata D et al. [Sphingosine-1-phosphate--molecular maestro]. 2012 Postepy Biochem. pmid:23373414
Japtok L et al. Sphingosine 1-phosphate modulates antigen capture by murine Langerhans cells via the S1P2 receptor subtype. 2012 PLoS ONE pmid:23145172
Härmä V et al. Lysophosphatidic acid and sphingosine-1-phosphate promote morphogenesis and block invasion of prostate cancer cells in three-dimensional organotypic models. 2012 Oncogene pmid:21996742
Bieberich E It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. 2012 Neurochem. Res. pmid:22246226
Bhattacharya M et al. IQGAP1 is necessary for pulmonary vascular barrier protection in murine acute lung injury and pneumonia. 2012 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:22561460
Spohr TC et al. Sphingosine 1-phosphate-primed astrocytes enhance differentiation of neuronal progenitor cells. 2012 J. Neurosci. Res. pmid:22588662
Parrill AL et al. Structure of the first sphingosine 1-phosphate receptor. 2012 Sci Signal pmid:22623751
Cuvillier O [Sphingosine 1-phosphate receptors: from biology to physiopathology]. 2012 Med Sci (Paris) pmid:23171898
Patel SA et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. 2012 Endocrinology pmid:22989629
Fernández-Pisonero I et al. Lipopolysaccharide and sphingosine-1-phosphate cooperate to induce inflammatory molecules and leukocyte adhesion in endothelial cells. 2012 J. Immunol. pmid:23089395
Ma Y et al. Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (Hâ‚‚Oâ‚‚) levels in guard cells in Vicia faba. 2012 Sci China Life Sci pmid:23090064
Taniguchi M et al. Regulation of autophagy and its associated cell death by "sphingolipid rheostat": reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. 2012 J. Biol. Chem. pmid:23035115
Kawashima T et al. Contrary effects of sphingosine-1-phosphate on expression of α-smooth muscle actin in transforming growth factor β1-stimulated lung fibroblasts. 2012 Eur. J. Pharmacol. pmid:23041148
Sorci-Thomas MG and Thomas MJ High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. 2012 Arterioscler. Thromb. Vasc. Biol. pmid:23077142
Yonesu K and Nara F [Anti-angiogenic effect of bioactive lipid antagonists]. 2012 Nippon Rinsho pmid:23513926
Bieberich E Ceramide and sphingosine-1-phosphate signaling in embryonic stem cell differentiation. 2012 Methods Mol. Biol. pmid:22528448
Callihan P and Hooks SB Sphingosine-1-phosphate signaling in neural progenitors. 2012 Methods Mol. Biol. pmid:22528449
Su SC and Bayless KJ Utilizing sphingosine-1-phosphate to stimulate sprouting angiogenesis. 2012 Methods Mol. Biol. pmid:22528450
Lim M et al. The role of sphingosine kinase 1/sphingosine-1-phosphate pathway in the myogenic tone of posterior cerebral arteries. 2012 PLoS ONE pmid:22532844
Lynch KR Building a better sphingosine kinase-1 inhibitor. 2012 Biochem. J. pmid:22533672
Mann DL Sphingosine 1-phosphate as a therapeutic target in heart failure: more questions than answers. 2012 Circulation pmid:22534620
Reina E et al. Determination of sphingosine-1-phosphate lyase activity by gas chromatography coupled to electron impact mass spectrometry. 2012 Chem. Phys. Lipids pmid:22265672
Meissner A et al. Tumor necrosis factor-α-mediated downregulation of the cystic fibrosis transmembrane conductance regulator drives pathological sphingosine-1-phosphate signaling in a mouse model of heart failure. 2012 Circulation pmid:22534621
Callihan P et al. Distinct generation, pharmacology, and distribution of sphingosine 1-phosphate and dihydrosphingosine 1-phosphate in human neural progenitor cells. 2012 Neuropharmacology pmid:22016110
Maceyka M et al. Sphingosine-1-phosphate signaling and its role in disease. 2012 Trends Cell Biol. pmid:22001186
Gupta VK et al. Focus on molecules: Sphingosine 1 Phosphate (S1P). 2012 Exp. Eye Res. pmid:22001715
Lim KG et al. Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. 2012 Br. J. Pharmacol. pmid:22251058
Shannon LA et al. CCR7/CCL19 controls expression of EDG-1 in T cells. 2012 J. Biol. Chem. pmid:22334704
Nunes J et al. Circulating sphingosine-1-phosphate and erythrocyte sphingosine kinase-1 activity as novel biomarkers for early prostate cancer detection. 2012 Br. J. Cancer pmid:22315056
Shimizu T et al. Sphingosine-1-phosphate receptor 3 promotes neointimal hyperplasia in mouse iliac-femoral arteries. 2012 Arterioscler. Thromb. Vasc. Biol. pmid:22308044
Canals D et al. Protein phosphatase 1α mediates ceramide-induced ERM protein dephosphorylation: a novel mechanism independent of phosphatidylinositol 4, 5-biphosphate (PIP2) and myosin/ERM phosphatase. 2012 J. Biol. Chem. pmid:22311981
Knapp M et al. Decreased free sphingoid base concentration in the plasma of patients with chronic systolic heart failure. 2012 Adv Med Sci pmid:22296975
Nagahashi M et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. 2012 Cancer Res. pmid:22298596
Ratajczak J et al. A novel view of paroxysmal nocturnal hemoglobinuria pathogenesis: more motile PNH hematopoietic stem/progenitor cells displace normal HSPCs from their niches in bone marrow due to defective adhesion, enhanced migration and mobilization in response to erythrocyte-released sphingosine-1 phosphate gradient. 2012 Leukemia pmid:22343521
Mascall KS et al. Sphingosine-1-phosphate-induced release of TIMP-2 from vascular smooth muscle cells inhibits angiogenesis. 2012 J. Cell. Sci. pmid:22344262
Hsu A et al. Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. 2012 Int. J. Oncol. pmid:22344462
Ruiz-Medina J et al. GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception. 2011 Jul-Aug Neuropharmacology pmid:21352831
Wang L et al. FTY720-induced human pulmonary endothelial barrier enhancement is mediated by c-Abl. 2011 Eur. Respir. J. pmid:21071472
Highkin MK et al. High-throughput screening assay for sphingosine kinase inhibitors in whole blood using RapidFire® mass spectrometry. 2011 J Biomol Screen pmid:21297110