Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Lung Neoplasms D008175 171 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Cummings RJ et al. Phospholipase D activation by sphingosine 1-phosphate regulates interleukin-8 secretion in human bronchial epithelial cells. 2002 J. Biol. Chem. pmid:12039947
Renault AD et al. Metabolism of sphingosine 1-phosphate and lysophosphatidic acid: a genome wide analysis of gene expression in Drosophila. 2002 Gene Expr. Patterns pmid:12617823
Candelore MR et al. Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor. 2002 Biochem. Biophys. Res. Commun. pmid:12270137
Harvey K et al. Serum factors involved in human microvascular endothelial cell morphogenesis. 2002 J. Lab. Clin. Med. pmid:12271276
Katsuma S et al. Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial cell proliferation. 2002 Genes Cells pmid:12485162
Yun JK and Kester M Regulatory role of sphingomyelin metabolites in hypoxia-induced vascular smooth muscle cell proliferation. 2002 Arch. Biochem. Biophys. pmid:12485605
Hirafuji M et al. [Modulation of sphingosine 1-phosphate, a new lipid mediator, on nitric oxide production by vascular smooth muscle cells]. 2002 Nippon Yakurigaku Zasshi pmid:12491784
Muraki K et al. [Effects of sphingosine-1-phosphate, a lipid mediator, in cardiovascular tissues]. 2002 Nippon Yakurigaku Zasshi pmid:12491795
Graeler M and Goetzl EJ Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. 2002 FASEB J. pmid:12468451
Tanski W et al. Sphingosine-1-phosphate induces G(alphai)-coupled, PI3K/ras-dependent smooth muscle cell migration. 2002 J. Surg. Res. pmid:12443721
Osada M et al. Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. 2002 Biochem. Biophys. Res. Commun. pmid:12445827
Grey A et al. The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. 2002 Endocrinology pmid:12446603
Ghelli A et al. Phospholipase D1 is threonine-phosphorylated in human-airway epithelial cells stimulated by sphingosine-1-phosphate by a mechanism involving Src tyrosine kinase and protein kinase Cdelta. 2002 Biochem. J. pmid:12014986
Maceyka M et al. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. 2002 Biochim. Biophys. Acta pmid:12531554
Chin TY et al. Distinct effects of different calcium-mobilizing agents on cell death in NG108-15 neuroblastoma X glioma cells. 2002 Mol. Pharmacol. pmid:11854428
Wang J et al. Receptor-mediated activation of a Cl(-) current by LPA and S1P in cultured corneal keratocytes. 2002 Invest. Ophthalmol. Vis. Sci. pmid:12356825
Van Brocklyn J et al. Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta. 2002 Cancer Lett. pmid:12175535
Birbes H et al. Mitochondria and ceramide: intertwined roles in regulation of apoptosis. 2002 Adv. Enzyme Regul. pmid:12123710
Essler M et al. Sphingosine 1-phosphate dynamically regulates myosin light chain phosphatase activity in human endothelial cells. 2002 Cell. Signal. pmid:11955953
Endo A et al. Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and CrkII. 2002 J. Biol. Chem. pmid:11956190
Bartholomä P et al. Neuronal cell death induced by antidepressants: lack of correlation with Egr-1, NF-kappa B and extracellular signal-regulated protein kinase activation. 2002 Biochem. Pharmacol. pmid:11996893
Formigli L et al. Sphingosine 1-phosphate induces Ca2+ transients and cytoskeletal rearrangement in C2C12 myoblastic cells. 2002 Am. J. Physiol., Cell Physiol. pmid:11997251
Schilling T et al. Lysophospholipids induce membrane hyperpolarization in microglia by activation of IKCa1 Ca(2+)-dependent K(+) channels. 2002 Neuroscience pmid:11927165
Sano T et al. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. 2002 J. Biol. Chem. pmid:11929870
Spiegel S and Milstien S Sphingosine 1-phosphate, a key cell signaling molecule. 2002 J. Biol. Chem. pmid:12011102
Kihara A and Igarashi Y [Sphingosine 1-phosphate in yeast]. 2002 Tanpakushitsu Kakusan Koso pmid:11915338
Okazaki T and Ito M [Signal transduction of ceramide]. 2002 Tanpakushitsu Kakusan Koso pmid:11915339
Jin ZQ et al. Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. 2002 Am. J. Physiol. Heart Circ. Physiol. pmid:12003800
Black JL and Johnson PR Factors controlling smooth muscle proliferation and airway remodelling. 2002 Curr Opin Allergy Clin Immunol pmid:11964750
Brinkmann V et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. 2002 J. Biol. Chem. pmid:11967257
Liu H et al. Sphingosine kinases: a novel family of lipid kinases. 2002 Prog. Nucleic Acid Res. Mol. Biol. pmid:12102559
Morales M [Participation of the phosphatidylinositol-3-kinase/Akt/endothelial-nitric-oxide synthase signaling in the processes of angiogenesis and vascular remodeling]. 2002 Nefrologia pmid:12107910
Kim DS et al. Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. 2002 Cell. Signal. pmid:12034359
Pyne S Cellular signaling by sphingosine and sphingosine 1-phosphate. Their opposing roles in apoptosis. 2002 Subcell. Biochem. pmid:12037985
Takuwa Y et al. The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. 2002 J. Biochem. pmid:12038970
Meacci E et al. A role for calcium in sphingosine 1-phosphate-induced phospholipase D activity in C2C12 myoblasts. 2002 FEBS Lett. pmid:12067705
Le Stunff H et al. Sphingosine-1-phosphate and lipid phosphohydrolases. 2002 Biochim. Biophys. Acta pmid:12069805
Kluk MJ and Hla T Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. 2002 Biochim. Biophys. Acta pmid:12069812
Siehler S and Manning DR Pathways of transduction engaged by sphingosine 1-phosphate through G protein-coupled receptors. 2002 Biochim. Biophys. Acta pmid:12069815
Koide Y et al. Development of novel EDG3 antagonists using a 3D database search and their structure-activity relationships. 2002 J. Med. Chem. pmid:12361389
Tamama K and Okajima F Sphingosine 1-phosphate signaling in atherosclerosis and vascular biology. 2002 Curr. Opin. Lipidol. pmid:12352012
Jolly PS et al. The roles of sphingosine-1-phosphate in asthma. 2002 Mol. Immunol. pmid:12217390
Niedernberg A et al. Comparative analysis of human and rat S1P(5) (edg8): differential expression profiles and sensitivities to antagonists. 2002 Biochem. Pharmacol. pmid:12234605
Payne SG et al. Sphingosine-1-phosphate: dual messenger functions. 2002 FEBS Lett. pmid:12401202
Lampasso JD et al. Role of protein kinase C alpha in primary human osteoblast proliferation. 2002 J. Bone Miner. Res. pmid:12412804
Napier JA et al. A new class of lipid desaturase central to sphingolipid biosynthesis and signalling. 2002 Trends Plant Sci. pmid:12417141
Uhlenbrock K et al. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. 2002 Cell. Signal. pmid:12220620
Tanimoto T et al. Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). 2002 J. Biol. Chem. pmid:12226078
Porcelli AM et al. Phospholipase D stimulation is required for sphingosine-1-phosphate activation of actin stress fibre assembly in human airway epithelial cells. 2002 Cell. Signal. pmid:11747992
Baudhuin LM et al. Akt activation induced by lysophosphatidic acid and sphingosine-1-phosphate requires both mitogen-activated protein kinase kinase and p38 mitogen-activated protein kinase and is cell-line specific. 2002 Mol. Pharmacol. pmid:12181443