Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Sarcoma 180 D012510 21 associated lipids
Edema D004487 152 associated lipids
Arthritis D001168 41 associated lipids
Heart Failure D006333 36 associated lipids
Pulmonary Edema D011654 23 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypersensitivity D006967 22 associated lipids
Acne Vulgaris D000152 35 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Melanoma D008545 69 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Asthma D001249 52 associated lipids
Weight Gain D015430 101 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Proteinuria D011507 30 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Cahalan SM et al. Actions of a picomolar short-acting S1P₁ agonist in S1P₁-eGFP knock-in mice. 2011 Nat. Chem. Biol. pmid:21445057
Ratner M Novartis eyes oral MS drug as potential blockbuster. 2010 Nat. Biotechnol. pmid:21057464
Kunkel GT et al. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. 2013 Nat Rev Drug Discov pmid:23954895
Nussbaum C et al. Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial P-selectin. 2015 Nat Commun pmid:25832730
Chen LY et al. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. 2015 Nat Commun pmid:25591940
Keller J et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. 2014 Nat Commun pmid:25333900
Silva VR et al. Hypothalamic S1P/S1PR1 axis controls energy homeostasis. 2014 Nat Commun pmid:25255053
Hirata N et al. Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. 2014 Nat Commun pmid:25254944
Deng Z et al. Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. 2015 Nat Commun pmid:25907800
Kassmer SH et al. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate. 2015 Nat Commun pmid:26456232
Vettorazzi S et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. 2015 Nat Commun pmid:26183376
Kajimoto T et al. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. 2013 Nat Commun pmid:24231649
Arce FT et al. Heterogeneous elastic response of human lung microvascular endothelial cells to barrier modulating stimuli. 2013 Nanomedicine pmid:23523769
Peng P et al. [Effect of sphingosine-1-phosphate on chemotherapy-induced ovarian damage and on the efficacy of chemotherapy in mice bearing S180 tumor]. 2012 Nan Fang Yi Ke Da Xue Xue Bao pmid:22445989
Massberg S and von Andrian UH Fingolimod and sphingosine-1-phosphate--modifiers of lymphocyte migration. 2006 N. Engl. J. Med. pmid:16971715
Kipp M and Amor S FTY720 on the way from the base camp to the summit of the mountain: relevance for remyelination. 2012 Mult. Scler. pmid:22383435
Hernandez F et al. Local effects of the sphingosine 1-phosphate on prostaglandin F2alpha-induced luteolysis in the pregnant rat. 2009 Mol. Reprod. Dev. pmid:19645054
Murakami A et al. Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. 2010 Mol. Pharmacol. pmid:20097776
Florio T et al. Basic fibroblast growth factor activates endothelial nitric-oxide synthase in CHO-K1 cells via the activation of ceramide synthesis. 2003 Mol. Pharmacol. pmid:12527801
Himmel HM et al. Guanine nucleotide-sensitive inhibition of L-type Ca2+ current by lysosphingolipids in RINm5F insulinoma cells. 1998 Mol. Pharmacol. pmid:9584212
Sato K et al. Possible involvement of cell surface receptors in sphingosine 1-phosphate-induced activation of extracellular signal-regulated kinase in C6 glioma cells. 1999 Mol. Pharmacol. pmid:9882706
Chin TY et al. Distinct effects of different calcium-mobilizing agents on cell death in NG108-15 neuroblastoma X glioma cells. 2002 Mol. Pharmacol. pmid:11854428
Tigyi G Selective ligands for lysophosphatidic acid receptor subtypes: gaining control over the endothelial differentiation gene family. 2001 Mol. Pharmacol. pmid:11723220
Damirin A et al. Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells. 2005 Mol. Pharmacol. pmid:15625281
Park KS et al. Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G-proteins. 2006 Mol. Pharmacol. pmid:16368894
Deng Q et al. Identification of Leu276 of the S1P1 receptor and Phe263 of the S1P3 receptor in interaction with receptor specific agonists by molecular modeling, site-directed mutagenesis, and affinity studies. 2007 Mol. Pharmacol. pmid:17170199
Alqinyah M et al. Regulator of G Protein Signaling 10 (Rgs10) Expression Is Transcriptionally Silenced in Activated Microglia by Histone Deacetylase Activity. 2017 Mol. Pharmacol. pmid:28031332
Alemany R et al. Stimulation of sphingosine-1-phosphate formation by the P2Y(2) receptor in HL-60 cells: Ca(2+) requirement and implication in receptor-mediated Ca(2+) mobilization, but not MAP kinase activation. 2000 Mol. Pharmacol. pmid:10953041
Himmel HM et al. Evidence for Edg-3 receptor-mediated activation of I(K.ACh) by sphingosine-1-phosphate in human atrial cardiomyocytes. 2000 Mol. Pharmacol. pmid:10908314
Jiang LI et al. Regions on adenylyl cyclase VII required for selective regulation by the G13 pathway. 2013 Mol. Pharmacol. pmid:23229509
Kang JS et al. Glabridin suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking sphingosine kinase pathway: implications of Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB/Rel signaling pathways. 2006 Mol. Pharmacol. pmid:16354764
Pettus BJ et al. The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. 2005 Mol. Pharmacol. pmid:15900018
Van Koppen CJ et al. A distinct G(i) protein-coupled receptor for sphingosylphosphorylcholine in human leukemia HL-60 cells and human neutrophils. 1996 Mol. Pharmacol. pmid:8649355
Berger A et al. Structural requirements of sphingosylphosphocholine and sphingosine-1-phosphate for stimulation of activator protein-1 activity. 1996 Mol. Pharmacol. pmid:8794881
Sorensen SD et al. Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. 2003 Mol. Pharmacol. pmid:14573770
Baudhuin LM et al. Akt activation induced by lysophosphatidic acid and sphingosine-1-phosphate requires both mitogen-activated protein kinase kinase and p38 mitogen-activated protein kinase and is cell-line specific. 2002 Mol. Pharmacol. pmid:12181443
Roch L et al. High-Resolution Expression Profiling of Peripheral Blood CD8 Cells in Patients with Multiple Sclerosis Displays Fingolimod-Induced Immune Cell Redistribution. 2017 Mol. Neurobiol. pmid:27631876
Czubowicz K et al. Sphingosine-1-phosphate and its effect on glucose deprivation/glucose reload stress: from gene expression to neuronal survival. 2015 Mol. Neurobiol. pmid:25056275
Zhu Y et al. Vitamin D therapy in experimental allergic encephalomyelitis could be limited by opposing effects of sphingosine 1-phosphate and gelsolin dysregulation. 2014 Mol. Neurobiol. pmid:24722820
Czubowicz K and Strosznajder R Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. 2014 Mol. Neurobiol. pmid:24420784
Pyszko J and Strosznajder JB Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. 2014 Mol. Neurobiol. pmid:24399507
Custódio R et al. Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of Burkholderia pseudomallei. 2016 Mol. Microbiol. pmid:27632710
Zhang O et al. Sphingosine kinase A is a pleiotropic and essential enzyme for Leishmania survival and virulence. 2013 Mol. Microbiol. pmid:23980754
Finney CA et al. S1P is associated with protection in human and experimental cerebral malaria. 2011 Mol. Med. pmid:21556483
Schaper K et al. Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. 2014 Mol. Immunol. pmid:24434636
Schröder M et al. The sphingosine kinase 1 and S1P1 axis specifically counteracts LPS-induced IL-12p70 production in immune cells of the spleen. 2011 Mol. Immunol. pmid:21435724
Oskeritzian CA Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. 2015 Mol. Immunol. pmid:24766823
Ryser MF et al. S1P(1) overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing. 2008 Mol. Immunol. pmid:18760838
Kuchler L et al. Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. 2017 Mol. Immunol. pmid:28846923
Jolly PS et al. The roles of sphingosine-1-phosphate in asthma. 2002 Mol. Immunol. pmid:12217390