Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Nerve Degeneration D009410 53 associated lipids
Hypertension D006973 115 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Hyperalgesia D006930 42 associated lipids
Anaphylaxis D000707 35 associated lipids
Thrombocytopenia D013921 15 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Cardiomyopathies D009202 10 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Adenoma D000236 40 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Vascular Diseases D014652 16 associated lipids
Ovarian Diseases D010049 5 associated lipids
Anemia D000740 21 associated lipids
Glioblastoma D005909 27 associated lipids
Fabry Disease D000795 4 associated lipids
Influenza, Human D007251 11 associated lipids
Retinal Detachment D012163 10 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Atherosclerosis D050197 85 associated lipids
Dilatation, Pathologic D004108 5 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Insulin Resistance D007333 99 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Endotoxemia D019446 27 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Acute Lung Injury D055371 33 associated lipids
Sensation Disorders D012678 2 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Hematologic Neoplasms D019337 4 associated lipids
Neuralgia D009437 28 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Lung Injury D055370 14 associated lipids
Teratocarcinoma D018243 7 associated lipids
Eye Abnormalities D005124 7 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Ileus D045823 3 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Adenomatous Polyps D018256 4 associated lipids
Niemann-Pick Disease, Type C D052556 1 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Wang Z et al. The Effect of Sphingosine 1-Phosphate/Sphingosine 1-Phosphate Receptor on Neutrophil Function and the Relevant Signaling Pathway. 2015 Acta Haematol. pmid:25872153
Wilson PC et al. Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel. 2015 Mol. Endocrinol. pmid:25871850
Rhee SH et al. Pelvic organ prolapse is associated with alteration of sphingosine-1-phosphate/Rho-kinase signalling pathway in human vaginal wall. 2015 J Obstet Gynaecol pmid:25692679
Ji F et al. K6PC-5, a novel sphingosine kinase 1 (SphK1) activator, alleviates dexamethasone-induced damages to osteoblasts through activating SphK1-Akt signaling. 2015 Biochem. Biophys. Res. Commun. pmid:25680461
Breslin JW et al. Involvement of local lamellipodia in endothelial barrier function. 2015 PLoS ONE pmid:25658915
Khavandgar Z and Murshed M Sphingolipid metabolism and its role in the skeletal tissues. 2015 Cell. Mol. Life Sci. pmid:25424644
Prüfer N et al. The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality. 2015 Biol. Chem. pmid:25252751
Sorrentino R et al. B cell depletion increases sphingosine-1-phosphate-dependent airway inflammation in mice. 2015 Am. J. Respir. Cell Mol. Biol. pmid:25250941
Abdel-Latif A et al. Lysophospholipids in coronary artery and chronic ischemic heart disease. 2015 Curr. Opin. Lipidol. pmid:26270808
Oskeritzian CA Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. 2015 Mol. Immunol. pmid:24766823
Iwabuchi K et al. Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. 2015 Mediators Inflamm. pmid:26609196
Mahajan-Thakur S et al. Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. 2015 Mediators Inflamm. pmid:26604433
Kassmer SH et al. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate. 2015 Nat Commun pmid:26456232
Camp SM et al. Pulmonary endothelial cell barrier enhancement by novel FTY720 analogs: methoxy-FTY720, fluoro-FTY720, and β-glucuronide-FTY720. 2015 Chem. Phys. Lipids pmid:26272033
Galvani S et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. 2015 Sci Signal pmid:26268607
Mooren OL et al. Role of N-WASP in Endothelial Monolayer Formation and Integrity. 2015 J. Biol. Chem. pmid:26070569
Blaho VA et al. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. 2015 Nature pmid:26053123
Wang J et al. Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis. 2015 Biomaterials pmid:26036174
Zamora-Pineda J et al. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. 2016 J. Exp. Med. pmid:27810923
Kobayashi N et al. Fluorescence-based rapid measurement of sphingosine-1-phosphate transport activity in erythrocytes. 2016 J. Lipid Res. pmid:27655910
Evangelisti C et al. Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. 2016 Leukemia pmid:27461062
Wang X et al. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. 2016 PLoS Pathog. pmid:27711202
Adamiak M et al. The Involvment of Hematopoietic-Specific PLC -β2 in Homing and Engraftment of Hematopoietic Stem/Progenitor Cells. 2016 Stem Cell Rev pmid:27704316
Zhang Q et al. Berberine Preconditioning Protects Neurons Against Ischemia via Sphingosine-1-Phosphate and Hypoxia-Inducible Factor-1[Formula: see text]. 2016 Am. J. Chin. Med. pmid:27430910
Adamiak M et al. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation. 2016 Cell Transplant pmid:27412411
Liu X et al. ApoA-I induces S1P release from endothelial cells through ABCA1 and SR-BI in a positive feedback manner. 2016 J. Physiol. Biochem. pmid:27377933
Egom EE et al. Effect of sphingosine-1-phosphate on L-type calcium current and Ca(2+) transient in rat ventricular myocytes. 2016 Mol. Cell. Biochem. pmid:27372350
Tong S et al. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane. 2016 J. Biol. Chem. pmid:27405756
Cai Y et al. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. 2016 Sci Signal pmid:27095594
Castaldi A et al. Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs. 2016 Cell. Signal. pmid:27094722
Anbazhagan AN et al. Transcriptional modulation of SLC26A3 (DRA) by sphingosine-1-phosphate. 2016 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:27079615
Koresawa R et al. Sphingosine-1-phosphate receptor 1 as a prognostic biomarker and therapeutic target for patients with primary testicular diffuse large B-cell lymphoma. 2016 Br. J. Haematol. pmid:27061580
Resop RS et al. Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery. 2016 J. Allergy Clin. Immunol. pmid:27056271
Zhang H et al. Binding Characteristics of Sphingosine-1-Phosphate to ApoM hints to Assisted Release Mechanism via the ApoM Calyx-Opening. 2016 Sci Rep pmid:27476912
Kim SE et al. The Role of Sphingosine-1-Phosphate in Adipogenesis of Graves' Orbitopathy. 2016 Invest. Ophthalmol. Vis. Sci. pmid:26830367
Messias CV et al. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. 2016 PLoS ONE pmid:26824863
Pászti-Gere E et al. Reinforced Epithelial Barrier Integrity via Matriptase Induction with Sphingosine-1-Phosphate Did Not Result in Disturbances in Physiological Redox Status. 2016 Oxid Med Cell Longev pmid:26823955
Wiltshire R et al. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. 2016 Sci Rep pmid:26813587
Farez MF and Correale J Sphingosine 1-phosphate signaling in astrocytes: Implications for progressive multiple sclerosis. 2016 J. Neurol. Sci. pmid:26810518
Zhang F et al. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. 2016 Am. J. Physiol. Heart Circ. Physiol. pmid:26589326
Pyne NJ and Tigyi GJ A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. 2016 Prog. Lipid Res. pmid:26584871
Rana A and Sharma S Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: Possible involvement of glycogen synthase kinase 3β and mitochondrial permeability transition pore. 2016 Clin. Exp. Pharmacol. Physiol. pmid:26582369
Yuasa D et al. C1q/TNF-related protein-1 functions to protect against acute ischemic injury in the heart. 2016 FASEB J. pmid:26578687
Patmanathan SN et al. Aberrant expression of the S1P regulating enzymes, SPHK1 and SGPL1, contributes to a migratory phenotype in OSCC mediated through S1PR2. 2016 Sci Rep pmid:27160553
Li N and Zhang F Implication of sphingosin-1-phosphate in cardiovascular regulation. 2016 Front Biosci (Landmark Ed) pmid:27100508
Zhang L et al. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels. 2016 Microcirculation pmid:27015105
Yaghobian D et al. Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy. 2016 Clin. Exp. Pharmacol. Physiol. pmid:26414003
Bae SJ et al. The circulating sphingosine-1-phosphate level predicts incident fracture in postmenopausal women: a 3.5-year follow-up observation study. 2016 Osteoporos Int pmid:26984570
Kalhori V et al. FTY720 (Fingolimod) attenuates basal and sphingosine-1-phosphate-evoked thyroid cancer cell invasion. 2016 Endocr. Relat. Cancer pmid:26935838
Nojima H et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. 2016 J. Hepatol. pmid:26254847