Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Perez GI et al. A central role for ceramide in the age-related acceleration of apoptosis in the female germline. 2005 FASEB J. pmid:15728664
Davis MD et al. Sphingosine 1-phosphate analogs as receptor antagonists. 2005 J. Biol. Chem. pmid:15590668
Lee MS et al. Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. 2005 Am. J. Physiol., Cell Physiol. pmid:15590895
Watterson KR et al. The role of sphingosine-1-phosphate in smooth muscle contraction. 2005 Cell. Signal. pmid:15567060
Schwab SR et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. 2005 Science pmid:16151014
Donati C et al. Sphingosine 1-phosphate regulates myogenic differentiation: a major role for S1P2 receptor. 2005 FASEB J. pmid:15625079
Damirin A et al. Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells. 2005 Mol. Pharmacol. pmid:15625281
Urata Y et al. Sphingosine 1-phosphate induces alpha-smooth muscle actin expression in lung fibroblasts via Rho-kinase. 2005 Kobe J Med Sci pmid:16199931
Vessey DA et al. A rapid radioassay for sphingosine kinase. 2005 Anal. Biochem. pmid:15649386
Hughes SK et al. Fluid shear stress modulates cell migration induced by sphingosine 1-phosphate and vascular endothelial growth factor. 2005 Ann Biomed Eng pmid:16133909
Foss FW et al. Synthesis, stability, and implications of phosphothioate agonists of sphingosine-1-phosphate receptors. 2005 Bioorg. Med. Chem. Lett. pmid:16125386
van Meeteren LA et al. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. 2005 J. Biol. Chem. pmid:15769751
Tani M et al. Involvement of neutral ceramidase in ceramide metabolism at the plasma membrane and in extracellular milieu. 2005 J. Biol. Chem. pmid:16126722
Huang WR et al. [Effects of sphingosine 1-phosphate on functions of T cell - review]. 2005 Zhongguo Shi Yan Xue Ye Xue Za Zhi pmid:16129068
Katkade V et al. Domain 5 of cleaved high molecular weight kininogen inhibits endothelial cell migration through Akt. 2005 Thromb. Haemost. pmid:16268479
Wei SH et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. 2005 Nat. Immunol. pmid:16273098
Lee HS et al. Antigen-induced Ca2+ mobilization in RBL-2H3 cells: role of I(1,4,5)P3 and S1P and necessity of I(1,4,5)P3 production. 2005 Cell Calcium pmid:16219349
Chalfant CE and Spiegel S Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. 2005 J. Cell. Sci. pmid:16219683
Armulik A et al. Endothelial/pericyte interactions. 2005 Circ. Res. pmid:16166562
Pchejetski D et al. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. 2005 Cancer Res. pmid:16357178
Maceyka M et al. Sphingosine kinases, sphingosine-1-phosphate and sphingolipidomics. 2005 Prostaglandins Other Lipid Mediat. pmid:16099387
Danieli-Betto D et al. Sphingosine 1-phosphate protects mouse extensor digitorum longus skeletal muscle during fatigue. 2005 Am. J. Physiol., Cell Physiol. pmid:15659717
Roth Z and Hansen PJ Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. 2005 Reproduction pmid:15695618
Tanski WJ et al. Sphingosine-1-phosphate-induced smooth muscle cell migration involves the mammalian target of rapamycin. 2005 J. Vasc. Surg. pmid:15696050
Björklund S et al. Effects of sphingosine 1-phosphate on calcium signaling, proliferation and S1P2 receptor expression in PC Cl3 rat thyroid cells. 2005 Mol. Cell. Endocrinol. pmid:15713536
Anelli V et al. Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. 2005 J. Neurochem. pmid:15715670
Mehta D et al. Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells. 2005 J. Biol. Chem. pmid:15728185
Chun J Lysophospholipids in the nervous system. 2005 Prostaglandins Other Lipid Mediat. pmid:16099390
Formigli L et al. Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels. 2005 J. Cell. Sci. pmid:15728255
Minnear FL et al. Sphingosine 1-phosphate prevents platelet-activating factor-induced increase in hydraulic conductivity in rat mesenteric venules: pertussis toxin sensitive. 2005 Am. J. Physiol. Heart Circ. Physiol. pmid:15778280
Inagaki Y et al. Sphingosine 1-phosphate analogue recognition and selectivity at S1P4 within the endothelial differentiation gene family of receptors. 2005 Biochem. J. pmid:15733055
Hsiao SH et al. Effects of exogenous sphinganine, sphingosine, and sphingosine-1-phosphate on relaxation and contraction of porcine thoracic aortic and pulmonary arterial rings. 2005 Toxicol. Sci. pmid:15829618
Radeke HH et al. Overlapping signaling pathways of sphingosine 1-phosphate and TGF-beta in the murine Langerhans cell line XS52. 2005 J. Immunol. pmid:15728487
Tani M et al. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. 2005 J. Lipid Res. pmid:16061940
Johnstone ED et al. Sphingosine-1-phosphate inhibition of placental trophoblast differentiation through a G(i)-coupled receptor response. 2005 J. Lipid Res. pmid:15995175
Rosen H and Goetzl EJ Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. 2005 Nat. Rev. Immunol. pmid:15999095
Yin F and Watsky MA LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. 2005 Invest. Ophthalmol. Vis. Sci. pmid:15914605
Karliner JS Off the shelf but not mass produced. 2005 Chem. Biol. pmid:15975506
Jo E et al. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. 2005 Chem. Biol. pmid:15975516
Li Z et al. Role of guanine nucleotide exchange factor P-Rex-2b in sphingosine 1-phosphate-induced Rac1 activation and cell migration in endothelial cells. 2005 Prostaglandins Other Lipid Mediat. pmid:15967165
Ledent C et al. Premature ovarian aging in mice deficient for Gpr3. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:15956199
Wu WT et al. Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells. 2005 Endocrinology pmid:15878967
Kariya Y et al. Products by the sphingosine kinase/sphingosine 1-phosphate (S1P) lyase pathway but not S1P stimulate mitogenesis. 2005 Genes Cells pmid:15938718
Abbey-Hosch SE et al. Differential regulation of NPR-B/GC-B by protein kinase c and calcium. 2005 Biochem. Pharmacol. pmid:16005434
Osawa Y et al. Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. 2005 J. Biol. Chem. pmid:15946935
Clemens JJ et al. Synthesis of 4(5)-phenylimidazole-based analogues of sphingosine-1-phosphate and FTY720: discovery of potent S1P1 receptor agonists. 2005 Bioorg. Med. Chem. Lett. pmid:15982878
Zaslavsky A et al. Sphingosine-1-phosphate induces a PDGFR-dependent cell detachment via inhibiting beta1 integrin in HEK293 cells. 2005 FEBS Lett. pmid:15987639
Chae SS and Hla T Inhibition of gene expression in vivo using multiplex siRNA. 2005 Methods Mol. Biol. pmid:15990401
Long J et al. Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools. 2005 Biochem. J. pmid:15960610
Malchinkhuu E et al. Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. 2005 Oncogene pmid:16007180