Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Influenza, Human D007251 11 associated lipids
Insulin Resistance D007333 99 associated lipids
Insulinoma D007340 28 associated lipids
Leukemia D007938 74 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Lung Neoplasms D008175 171 associated lipids
Melanoma D008545 69 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Cardiomyopathies D009202 10 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Nerve Degeneration D009410 53 associated lipids
Neuralgia D009437 28 associated lipids
Neuroblastoma D009447 66 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Ovarian Diseases D010049 5 associated lipids
Pain D010146 64 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Abuhusain HJ et al. A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. 2013 J. Biol. Chem. pmid:24265321
Bolli MH et al. Novel S1P1 receptor agonists--part 1: From pyrazoles to thiophenes. 2013 J. Med. Chem. pmid:24266709
Das A et al. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. 2013 Biomaterials pmid:24064148
Garris CS et al. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. 2013 Nat. Immunol. pmid:24076635
Kimizuka K et al. Sphingosine 1-phosphate (S1P) induces S1P2 receptor-dependent tonic contraction in murine iliac lymph vessels. 2013 Microcirculation pmid:22913344
Donati C et al. New insights into the role of sphingosine 1-phosphate and lysophosphatidic acid in the regulation of skeletal muscle cell biology. 2013 Biochim. Biophys. Acta pmid:22877992
Taub DD et al. Distinct energy requirements for human memory CD4 T-cell homeostatic functions. 2013 FASEB J. pmid:22972918
Xiang SY et al. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. 2013 Biochim. Biophys. Acta pmid:22986288
Kowalski GM et al. Plasma sphingosine-1-phosphate is elevated in obesity. 2013 PLoS ONE pmid:24039766
Ota K et al. TGF-β induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. 2013 Endocrinology pmid:23861379
Harijith A et al. Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins. 2013 Am. J. Pathol. pmid:23933064
Cortez-Retamozo V et al. Angiotensin II drives the production of tumor-promoting macrophages. 2013 Immunity pmid:23333075
Ono Y et al. Sphingosine 1-phosphate release from platelets during clot formation: close correlation between platelet count and serum sphingosine 1-phosphate concentration. 2013 Lipids Health Dis pmid:23418753
Bot M et al. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice. 2013 PLoS ONE pmid:23700419
Arce FT et al. Heterogeneous elastic response of human lung microvascular endothelial cells to barrier modulating stimuli. 2013 Nanomedicine pmid:23523769
Chan H and Pitson SM Post-translational regulation of sphingosine kinases. 2013 Biochim. Biophys. Acta pmid:22801036
Orr Gandy KA and Obeid LM Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. 2013 Biochim. Biophys. Acta pmid:22801037
Saba JD and de la Garza-Rodea AS S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. 2013 Biochim. Biophys. Acta pmid:22750505
García-Bernal D et al. Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving α4β1 integrin function. 2013 J. Pathol. pmid:22711564
Southern C et al. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. 2013 J Biomol Screen pmid:23396314
Takuwa Y et al. Sphingosine-1-phosphate as a mediator involved in development of fibrotic diseases. 2013 Biochim. Biophys. Acta pmid:22735357
Olivera A et al. Shaping the landscape: metabolic regulation of S1P gradients. 2013 Biochim. Biophys. Acta pmid:22735358
Karliner JS Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. 2013 Biochim. Biophys. Acta pmid:22735359
Selhub J et al. Dietary vitamin B6 intake modulates colonic inflammation in the IL10-/- model of inflammatory bowel disease. 2013 J. Nutr. Biochem. pmid:24183308
Watson DG et al. The roles of sphingosine kinases 1 and 2 in regulating the Warburg effect in prostate cancer cells. 2013 Cell. Signal. pmid:23314175
Ohkawa R et al. [Sphingolipids, possible biomarkers for atherosclerotic disorders]. 2013 Rinsho Byori pmid:24369591
Wang X et al. Morin reduces hepatic inflammation-associated lipid accumulation in high fructose-fed rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. 2013 Biochem. Pharmacol. pmid:24134913
Yu H et al. Insulin protects apoptotic cardiomyocytes from hypoxia/reoxygenation injury through the sphingosine kinase/sphingosine 1-phosphate axis. 2013 PLoS ONE pmid:24349009
Walls SM et al. Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. 2013 PLoS Genet. pmid:24339790
Brewer JW Phospholipids: "greasing the wheels" of humoral immunity. 2013 Biochim. Biophys. Acta pmid:23051607
Mierzejewska K et al. Sphingosine-1-phosphate-mediated mobilization of hematopoietic stem/progenitor cells during intravascular hemolysis requires attenuation of SDF-1-CXCR4 retention signaling in bone marrow. 2013 Biomed Res Int pmid:24490172
Polzin A et al. Aspirin inhibits release of platelet-derived sphingosine-1-phosphate in acute myocardial infarction. 2013 Int. J. Cardiol. pmid:24169533
Kunkel GT et al. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. 2013 Nat Rev Drug Discov pmid:23954895
Gorshkova IA et al. Inhibition of sphingosine-1-phosphate lyase rescues sphingosine kinase-1-knockout phenotype following murine cardiac arrest. 2013 Life Sci. pmid:23892195
Tran-Dinh A et al. HDL and endothelial protection. 2013 Br. J. Pharmacol. pmid:23488589
Mudd JC et al. Impaired T-cell responses to sphingosine-1-phosphate in HIV-1 infected lymph nodes. 2013 Blood pmid:23422746
Camacho L et al. Acid ceramidase as a therapeutic target in metastatic prostate cancer. 2013 J. Lipid Res. pmid:23423838
Kawahara S et al. Sphingosine kinase 1 plays a role in the upregulation of CD44 expression through extracellular signal-regulated kinase signaling in human colon cancer cells. 2013 Anticancer Drugs pmid:23426175
Yang L et al. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. 2013 J. Hepatol. pmid:23466305
Reichardt P et al. A role for LFA-1 in delaying T-lymphocyte egress from lymph nodes. 2013 EMBO J. pmid:23443048
Natarajan V et al. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. 2013 Am. J. Respir. Cell Mol. Biol. pmid:23449739
Kusch A et al. Novel signalling mechanisms and targets in renal ischaemia and reperfusion injury. 2013 Acta Physiol (Oxf) pmid:23432924
Loetscher E et al. Assay to measure the secretion of sphingosine-1-phosphate from cells induced by S1P lyase inhibitors. 2013 Biochem. Biophys. Res. Commun. pmid:23499842
Moriue T et al. Sphingosine 1-phosphate attenuates peroxide-induced apoptosis in HaCaT cells cultured in vitro. 2013 Clin. Exp. Dermatol. pmid:23837937
Adada M et al. Sphingosine-1-phosphate receptor 2. 2013 FEBS J. pmid:23879641
Xiang SY et al. PLCε, PKD1, and SSH1L transduce RhoA signaling to protect mitochondria from oxidative stress in the heart. 2013 Sci Signal pmid:24345679
Gao X et al. Aberrant sphingolipid metabolism in the human fallopian tube with ectopic pregnancy. 2013 Lipids pmid:23881382
Kendig DM et al. Sphingosine-1-phosphate induced contraction of bladder smooth muscle. 2013 Eur. J. Pharmacol. pmid:24120660
Karimian G et al. Sphingosine kinase-1 inhibition protects primary rat hepatocytes against bile salt-induced apoptosis. 2013 Biochim. Biophys. Acta pmid:23816565
Liu Y et al. Hepatopoietin Cn reduces ethanol-induced hepatoxicity via sphingosine kinase 1 and sphingosine 1-phosphate receptors. 2013 J. Pathol. pmid:23839903
Kurano M et al. Liver involvement in sphingosine 1-phosphate dynamism revealed by adenoviral hepatic overexpression of apolipoprotein M. 2013 Atherosclerosis pmid:23664237
Stradner MH et al. Sphingosine 1-phosphate counteracts the effects of interleukin-1β in human chondrocytes. 2013 Arthritis Rheum. pmid:23666803
Usatyuk PV et al. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction. 2013 PLoS ONE pmid:23667561
Starzyńska T et al. An intensified systemic trafficking of bone marrow-derived stem/progenitor cells in patients with pancreatic cancer. 2013 J. Cell. Mol. Med. pmid:23672538
Osawa Y et al. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer. 2013 J. Clin. Invest. pmid:23298833
Xu Y et al. Low sphingosine-1-phosphate impairs lung dendritic cells in cystic fibrosis. 2013 Am. J. Respir. Cell Mol. Biol. pmid:23239501
Evindar G et al. Exploring amino acids derivatives as potent, selective, and direct agonists of sphingosine-1-phosphate receptor subtype-1. 2013 Bioorg. Med. Chem. Lett. pmid:23245510
Billich A et al. Cellular assay for the characterization of sphingosine-1-phosphate lyase inhibitors. 2013 Anal. Biochem. pmid:23246729
Karapetyan AV et al. Bioactive lipids and cationic antimicrobial peptides as new potential regulators for trafficking of bone marrow-derived stem cells in patients with acute myocardial infarction. 2013 Stem Cells Dev. pmid:23282236
Kleinjan A et al. Topical treatment targeting sphingosine-1-phosphate and sphingosine lyase abrogates experimental allergic rhinitis in a murine model. 2013 Allergy pmid:23253209
Kager LM et al. Endogenous protein C has a protective role during Gram-negative pneumosepsis (melioidosis). 2013 J. Thromb. Haemost. pmid:23216621
Liang J et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. 2013 Cancer Cell pmid:23273921
Jiang LI et al. Regions on adenylyl cyclase VII required for selective regulation by the G13 pathway. 2013 Mol. Pharmacol. pmid:23229509
Park K et al. A novel role of a lipid species, sphingosine-1-phosphate, in epithelial innate immunity. 2013 Mol. Cell. Biol. pmid:23230267
Camprubí-Robles M et al. Sphingosine-1-phosphate-induced nociceptor excitation and ongoing pain behavior in mice and humans is largely mediated by S1P3 receptor. 2013 J. Neurosci. pmid:23392686
Yasuo M et al. Fenretinide causes emphysema, which is prevented by sphingosine 1-phoshate. 2013 PLoS ONE pmid:23326540
Kim YD et al. Effects of sphingosine-1-phosphate on pacemaker activity of interstitial cells of Cajal from mouse small intestine. 2013 Mol. Cells pmid:23307289
Gandy KA et al. Sphingosine 1-phosphate induces filopodia formation through S1PR2 activation of ERM proteins. 2013 Biochem. J. pmid:23106337
Pantoja M et al. Genetic elevation of sphingosine 1-phosphate suppresses dystrophic muscle phenotypes in Drosophila. 2013 Development pmid:23154413
Takahashi K et al. Novel therapy for liver regeneration by increasing the number of platelets. 2013 Surg. Today pmid:23180116
Lidington D et al. Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness. 2013 Cardiovasc. Res. pmid:23180720
Nagahashi M et al. Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network. 2013 FASEB J. pmid:23180825
Huang J et al. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. 2013 Mol. Cell. Endocrinol. pmid:23127801
Cartwright TA et al. Mrp1 is essential for sphingolipid signaling to p-glycoprotein in mouse blood-brain and blood-spinal cord barriers. 2013 J. Cereb. Blood Flow Metab. pmid:23168528
Véret J et al. Role of palmitate-induced sphingoid base-1-phosphate biosynthesis in INS-1 β-cell survival. 2013 Biochim. Biophys. Acta pmid:23085009
Abbasi T and Garcia JG Sphingolipids in lung endothelial biology and regulation of vascular integrity. 2013 Handb Exp Pharmacol pmid:23563658
Gandy KA and Obeid LM Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. 2013 Handb Exp Pharmacol pmid:23563662
Bruni P and Donati C Role of sphingosine 1-phosphate in skeletal muscle cell biology. 2013 Handb Exp Pharmacol pmid:23563671
Vessey DA et al. FTY720 postconditions isolated perfused heart by a mechanism independent of sphingosine kinase 2 and different from S1P or ischemic postconditioning. 2013 Med Sci Monit Basic Res pmid:23567658
Wallington-Beddoe CT et al. Oncogenic properties of sphingosine kinases in haematological malignancies. 2013 Br. J. Haematol. pmid:23521541
Bendall LJ and Basnett J Role of sphingosine 1-phosphate in trafficking and mobilization of hematopoietic stem cells. 2013 Curr. Opin. Hematol. pmid:23507960
Erkhembaatar LO et al. Increased expression of sphingosine kinase in the amnion during labor. 2013 Placenta pmid:23462226
Kikuta J et al. Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23569273
Nguyen DH et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23569284
Alberg AJ et al. Plasma sphingolipids and lung cancer: a population-based, nested case-control study. 2013 Cancer Epidemiol. Biomarkers Prev. pmid:23749868
Willis MA and Cohen JA Fingolimod therapy for multiple sclerosis. 2013 Semin Neurol pmid:23709211
Tatematsu S et al. Endothelial lipase is a critical determinant of high-density lipoprotein-stimulated sphingosine 1-phosphate-dependent signaling in vascular endothelium. 2013 Arterioscler. Thromb. Vasc. Biol. pmid:23723371
Guo L et al. Sphingosine-1-phosphate inhibits ceramide-induced apoptosis during murine preimplantation embryonic development. 2013 Theriogenology pmid:23731666
Pyne NJ et al. Role of sphingosine 1-phosphate and lysophosphatidic acid in fibrosis. 2013 Biochim. Biophys. Acta pmid:22801038
Zhang L et al. Sphingosine kinase 2 (Sphk2) regulates platelet biogenesis by providing intracellular sphingosine 1-phosphate (S1P). 2013 Blood pmid:23775711
Koch A et al. Sphingosine 1-phosphate in renal diseases. 2013 Cell. Physiol. Biochem. pmid:23736205
Huang LS et al. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis. 2013 FASEB J. pmid:23315259
Lukowski ZL et al. Prevention of ocular scarring after glaucoma filtering surgery using the monoclonal antibody LT1009 (Sonepcizumab) in a rabbit model. 2013 J. Glaucoma pmid:21946553
Fukuhara S and Mochizuki N [Lymphocytes mobilization into blood regulated by Spns2, a sphingosine 1-phosphate transporter, expressed on endothelial cells]. 2013 Seikagaku pmid:23717873
O'Sullivan C and Dev KK The structure and function of the S1P1 receptor. 2013 Trends Pharmacol. Sci. pmid:23763867
Ohkuni A et al. Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway. 2013 Biochem. Biophys. Res. Commun. pmid:24269233
Kajimoto T et al. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. 2013 Nat Commun pmid:24231649
Ito S et al. Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. 2013 Coron. Artery Dis. pmid:24212262
Lim SH et al. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. 2013 Integr Biol (Camb) pmid:24190477
Lamichhane A et al. Nutritional components regulate the gut immune system and its association with intestinal immune disease development. 2013 J. Gastroenterol. Hepatol. pmid:24251698