Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Lung Neoplasms D008175 171 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Su SC et al. Annexin 2 regulates endothelial morphogenesis by controlling AKT activation and junctional integrity. 2010 J. Biol. Chem. pmid:20947498
Chi XX and Nicol GD The sphingosine 1-phosphate receptor, S1PR₁, plays a prominent but not exclusive role in enhancing the excitability of sensory neurons. 2010 J. Neurophysiol. pmid:20844107
Józefowski S et al. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide. 2010 J. Immunol. pmid:21041721
Chumanevich AA et al. Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase. 2010 Carcinogenesis pmid:20688834
Howard C et al. Dental pulp stem cell migration. 2010 J Endod pmid:21092813
Im DS Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. 2010 Acta Pharmacol. Sin. pmid:20729877
Strub GM et al. Extracellular and intracellular actions of sphingosine-1-phosphate. 2010 Adv. Exp. Med. Biol. pmid:20919652
Oskouian B and Saba JD Cancer treatment strategies targeting sphingolipid metabolism. 2010 Adv. Exp. Med. Biol. pmid:20919655
Wang S et al. A polysaccharide, MDG-1, induces S1P1 and bFGF expression and augments survival and angiogenesis in the ischemic heart. 2010 Glycobiology pmid:20008963
McDonald RA et al. The sphingosine kinase inhibitor N,N-dimethylsphingosine inhibits neointimal hyperplasia. 2010 Br. J. Pharmacol. pmid:20015089
Mair KM et al. Interaction between anandamide and sphingosine-1-phosphate in mediating vasorelaxation in rat coronary artery. 2010 Br. J. Pharmacol. pmid:20718749
Bonnaud S et al. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. 2010 Cancer Res. pmid:21118968
Lan T et al. Berberine ameliorates renal injury in diabetic C57BL/6 mice: Involvement of suppression of SphK-S1P signaling pathway. 2010 Arch. Biochem. Biophys. pmid:20646989
Seo J et al. Sphingosine-1-phosphate signaling in human submandibular cells. 2010 J. Dent. Res. pmid:20651091
Sattler KJ et al. Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. 2010 Basic Res. Cardiol. pmid:20652276
Kelly RF et al. Ethanolamine is a novel STAT-3 dependent cardioprotective agent. 2010 Basic Res. Cardiol. pmid:20938668
Ma B et al. Stereochemistry-activity relationship of orally active tetralin S1P agonist prodrugs. 2010 Bioorg. Med. Chem. Lett. pmid:20188554
Gangoiti P et al. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. 2010 Prog. Lipid Res. pmid:20193711
Tölle M et al. Relevance of sphingolipids in the pleiotropic protective effects of high-density lipoproteins. 2010 Curr. Pharm. Des. pmid:20196741
Serebrov VIu et al. [Activity of the sphingomyelin cycle enzymes and concentration of products of sphingomyelin degradation in the rat liver in the course of acute toxic hepatitis]. 2010 Mar-Apr Biomed Khim pmid:21341516
Knapp M Cardioprotective role of sphingosine-1-phosphate. 2011 J. Physiol. Pharmacol. pmid:22314562
Berdyshev EV et al. Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase. 2011 PLoS ONE pmid:21304987
Schuchardt M et al. Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. 2011 Br. J. Pharmacol. pmid:21309759
Kikuta J et al. [Encounter of cancer cells with bone. In vivo imaging of osteoclasts and their precursors in intact bone tissues]. 2011 Clin Calcium pmid:21358058
Mair N et al. Genetic evidence for involvement of neuronally expressed S1P₁ receptor in nociceptor sensitization and inflammatory pain. 2011 PLoS ONE pmid:21359147
Ishii T et al. The role of sphingosine 1-phosphate in migration of osteoclast precursors; an application of intravital two-photon microscopy. 2011 Mol. Cells pmid:21360199
Antel J and Hohlfeld R Modulation of sphingosine 1-phosphate signaling in neurologic disease. 2011 Neurology pmid:21360856
Hagen N et al. Sphingosine-1-phosphate links glycosphingolipid metabolism to neurodegeneration via a calpain-mediated mechanism. 2011 Cell Death Differ. pmid:21331079
Meng H et al. Loss of sphingosine kinase 1/S1P signaling impairs cell growth and survival of neurons and progenitor cells in the developing sensory ganglia. 2011 PLoS ONE pmid:22096531
Yuan L et al. [The study on protective effect of sphingosine-1-phosphate in cardiomyocytes]. 2011 Zhongguo Ying Yong Sheng Li Xue Za Zhi pmid:22097726
Ling B et al. Sphingosine-1-phosphate: a potential therapeutic agent against human breast cancer. 2011 Invest New Drugs pmid:20041340
Lépine S et al. Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. 2011 Cell Death Differ. pmid:20798685
Kim MG et al. CD4+ CD25+ regulatory T cells partially mediate the beneficial effects of FTY720, a sphingosine-1-phosphate analogue, during ischaemia/reperfusion-induced acute kidney injury. 2011 Nephrol. Dial. Transplant. pmid:20702533
Jiang Z et al. Metabonomic study on women of reproductive age treated with nutritional intervention: screening potential biomarkers related to neural tube defects occurrence. 2011 Biomed. Chromatogr. pmid:20812204
Durafourt BA et al. Differential responses of human microglia and blood-derived myeloid cells to FTY720. 2011 J. Neuroimmunol. pmid:20826007
Selim S et al. Plasma levels of sphingosine 1-phosphate are strongly correlated with haematocrit, but variably restored by red blood cell transfusions. 2011 Clin. Sci. pmid:21749329
Kim DS et al. Sphingosine-1-phosphate decreases melanin synthesis via microphthalmia-associated transcription factor phosphorylation through the S1P3 receptor subtype. 2011 J. Pharm. Pharmacol. pmid:21749389
Kojima K and Inouye K Activation of matriptase zymogen. 2011 J. Biochem. pmid:21737400
AL-Shawaf E et al. GVI phospholipase A2 role in the stimulatory effect of sphingosine-1-phosphate on TRPC5 cationic channels. 2011 Cell Calcium pmid:21742378
Bautista-Pérez R et al. Sphingosine-1-phosphate induced vasoconstriction is increased in the isolated perfused kidneys of diabetic rats. 2011 Diabetes Res. Clin. Pract. pmid:21775010
Murakami M et al. Sphingosine kinase 1/S1P pathway involvement in the GDNF-induced GAP43 transcription. 2011 J. Cell. Biochem. pmid:21769916
Yu Y and Qin SC [An active lipid signaling molecule: sphingosine-1-phosphate and its biological characteristics]. 2011 Sheng Li Ke Xue Jin Zhan pmid:21770269
Tanfin Z et al. ATP-binding cassette ABCC1 is involved in the release of sphingosine 1-phosphate from rat uterine leiomyoma ELT3 cells and late pregnant rat myometrium. 2011 Cell. Signal. pmid:21803151
Gault CR and Obeid LM Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy. 2011 Crit. Rev. Biochem. Mol. Biol. pmid:21787121
Qadri SM et al. Sphingosine but not sphingosine-1-phosphate stimulates suicidal erythrocyte death. 2011 Cell. Physiol. Biochem. pmid:21865742
Zhao Z et al. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions. 2011 J. Biomed. Sci. pmid:21645412
Kharel Y et al. Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. 2011 Biochem. J. pmid:21848514
Kim ES et al. Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. 2011 J. Cell. Sci. pmid:21652634
Lim KG et al. (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: Effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. 2011 Cell. Signal. pmid:21620961
Egom EE et al. Activation of Pak1/Akt/eNOS signaling following sphingosine-1-phosphate release as part of a mechanism protecting cardiomyocytes against ischemic cell injury. 2011 Am. J. Physiol. Heart Circ. Physiol. pmid:21705677
Yangyuoru PM et al. Determination of sphingosine kinase 2 activity using fluorescent sphingosine by capillary electrophoresis. 2011 Electrophoresis pmid:21706498
Kawahara A [Genetic dissection of cardiac morphogenesis in zebrafish]. 2011 Seikagaku pmid:21706872
Burns TA and Luberto C Sphingolipid metabolism and leukemia: a potential for novel therapeutic approaches. 2011 Anticancer Agents Med Chem pmid:21707485
Cuvillier O and Ader I Hypoxia-inducible factors and sphingosine 1-phosphate signaling. 2011 Anticancer Agents Med Chem pmid:21707486
Bedia C et al. Regulation of autophagy by sphingolipids. 2011 Anticancer Agents Med Chem pmid:21707487
Weigert A et al. S1P regulation of macrophage functions in the context of cancer. 2011 Anticancer Agents Med Chem pmid:21707489
Watters RJ et al. Targeting sphingosine-1-phosphate receptors in cancer. 2011 Anticancer Agents Med Chem pmid:21707490
Stevenson CE et al. Targeting sphingosine-1-phosphate in hematologic malignancies. 2011 Anticancer Agents Med Chem pmid:21707492
Bourquin F et al. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. 2011 Protein Sci. pmid:21710479
Mathew B et al. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. 2011 FASEB J. pmid:21712494
Olivera A and Rivera J An emerging role for the lipid mediator sphingosine-1-phosphate in mast cell effector function and allergic disease. 2011 Adv. Exp. Med. Biol. pmid:21713655
Kujjo LL et al. Chemotherapy-induced late transgenerational effects in mice. 2011 PLoS ONE pmid:21437292
Bandhuvula P et al. S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart. 2011 Am. J. Physiol. Heart Circ. Physiol. pmid:21335477
Kennedy AJ et al. Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells. 2011 J. Med. Chem. pmid:21495716
Jenkins RW et al. Regulation of CC ligand 5/RANTES by acid sphingomyelinase and acid ceramidase. 2011 J. Biol. Chem. pmid:21335555
Pinschewer DD et al. Impact of sphingosine 1-phosphate modulation on immune outcomes. 2011 Neurology pmid:21339486
Mehling M et al. Clinical immunology of the sphingosine 1-phosphate receptor modulator fingolimod (FTY720) in multiple sclerosis. 2011 Neurology pmid:21339487
Hla T and Brinkmann V Sphingosine 1-phosphate (S1P): Physiology and the effects of S1P receptor modulation. 2011 Neurology pmid:21339489
Soliven B et al. The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. 2011 Neurology pmid:21339490
Brecht K et al. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. 2011 FASEB J. pmid:21450910
Benamer N et al. Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts. 2011 Biochem. Biophys. Res. Commun. pmid:21420933
Ocaña-Morgner C et al. Sphingosine 1-phosphate-induced motility and endocytosis of dendritic cells is regulated by SWAP-70 through RhoA. 2011 J. Immunol. pmid:21421853
Kato K et al. Regulation by heat shock protein 27 of osteocalcin synthesis in osteoblasts. 2011 Endocrinology pmid:21427224
López-Juárez A et al. Expression of LPP3 in Bergmann glia is required for proper cerebellar sphingosine-1-phosphate metabolism/signaling and development. 2011 Glia pmid:21319224
Yonamine I et al. Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors. 2011 J. Cell Biol. pmid:21321100
Sekine Y et al. HDL and sphingosine-1-phosphate activate stat3 in prostate cancer DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion. 2011 Prostate pmid:20979115
Noguchi K and Chun J Roles for lysophospholipid S1P receptors in multiple sclerosis. 2011 Crit. Rev. Biochem. Mol. Biol. pmid:20979571
Becker S et al. Follicular fluid high-density lipoprotein-associated sphingosine 1-phosphate (S1P) promotes human granulosa lutein cell migration via S1P receptor type 3 and small G-protein RAC1. 2011 Biol. Reprod. pmid:20980685
Barra V et al. Apoptotic cell-derived factors induce arginase II expression in murine macrophages by activating ERK5/CREB. 2011 Cell. Mol. Life Sci. pmid:20949368
Greenspon J et al. Sphingosine-1-phosphate regulates the expression of adherens junction protein E-cadherin and enhances intestinal epithelial cell barrier function. 2011 Dig. Dis. Sci. pmid:20936358
Lan T et al. Simultaneous determination of sphingosine and sphingosine 1-phosphate in biological samples by liquid chromatography-tandem mass spectrometry. 2011 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:21292568
Cahalan SM et al. Actions of a picomolar short-acting S1P₁ agonist in S1P₁-eGFP knock-in mice. 2011 Nat. Chem. Biol. pmid:21445057
Jeffery DR et al. Fingolimod for the treatment of relapsing multiple sclerosis. 2011 Expert Rev Neurother pmid:21158700
Chi H Sphingosine-1-phosphate and immune regulation: trafficking and beyond. 2011 Trends Pharmacol. Sci. pmid:21159389
Jee BC et al. Dose-dependent effect of sphingosine-1-phosphate in mouse oocyte maturation medium on subsequent embryo development. 2011 Gynecol. Obstet. Invest. pmid:21160167
Kim YM et al. G(alpha)12/13 induction of CYR61 in association with arteriosclerotic intimal hyperplasia: effect of sphingosine-1-phosphate. 2011 Arterioscler. Thromb. Vasc. Biol. pmid:21212405
Kharel Y et al. A rapid assay for assessment of sphingosine kinase inhibitors and substrates. 2011 Anal. Biochem. pmid:21216217
Gaveglio VL et al. Metabolic pathways for the degradation of phosphatidic acid in isolated nuclei from cerebellar cells. 2011 Arch. Biochem. Biophys. pmid:21216221
Ter Braak M et al. Cis-4-methylsphingosine is a sphingosine-1-phosphate receptor modulator. 2011 Biochem. Pharmacol. pmid:21163254
Markiewicz M et al. Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells. 2011 Microcirculation pmid:21166920
Sassoli C et al. Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction. 2011 J. Cell. Mol. Med. pmid:21199328
Jang S et al. Modulation of sphingosine 1-phosphate and tyrosine hydroxylase in the stress-induced anxiety. 2011 Neurochem. Res. pmid:21076868
Hisano Y et al. The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. 2011 J. Biol. Chem. pmid:21084291
Bradley ME et al. The in vitro metabolism of sphingosine-1-phosphate: identification; inhibition and pharmacological implications. 2011 Eur. J. Pharmacol. pmid:21970805
Lan T et al. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells. 2011 Mol. Endocrinol. pmid:21998146
Kang H et al. Fluid shear stress and sphingosine 1-phosphate activate calpain to promote membrane type 1 matrix metalloproteinase (MT1-MMP) membrane translocation and endothelial invasion into three-dimensional collagen matrices. 2011 J. Biol. Chem. pmid:22002053
Gomez L et al. A novel role for mitochondrial sphingosine-1-phosphate produced by sphingosine kinase-2 in PTP-mediated cell survival during cardioprotection. 2011 Basic Res. Cardiol. pmid:22002221
Yester JW et al. Extracellular and intracellular sphingosine-1-phosphate in cancer. 2011 Cancer Metastasis Rev. pmid:22002715
Pyne S et al. Sphingosine kinase inhibitors and cancer: seeking the golden sword of Hercules. 2011 Cancer Res. pmid:21940750
Kartal M et al. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. 2011 Nutr Cancer pmid:21500096