Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Sarcoma 180 D012510 21 associated lipids
Edema D004487 152 associated lipids
Arthritis D001168 41 associated lipids
Heart Failure D006333 36 associated lipids
Pulmonary Edema D011654 23 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypersensitivity D006967 22 associated lipids
Acne Vulgaris D000152 35 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Hsia K et al. Sphingosine-1-phosphate improves endothelialization with reduction of thrombosis in recellularized human umbilical vein graft by inhibiting syndecan-1 shedding in vitro. 2017 Acta Biomater pmid:28110073
Maiti A et al. Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival. 2017 Cell. Signal. pmid:28108260
Meissner A et al. Sphingosine-1-phosphate signalling-a key player in the pathogenesis of Angiotensin II-induced hypertension. 2017 Cardiovasc. Res. pmid:28082452
Atkinson D et al. Sphingosine 1-phosphate lyase deficiency causes Charcot-Marie-Tooth neuropathy. 2017 Neurology pmid:28077491
Ng ML et al. The role of sphingolipid signalling in diabetes‑associated pathologies (Review). 2017 Int. J. Mol. Med. pmid:28075451
van der Weyden L et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. 2017 Nature pmid:28052056
Lima S et al. Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking. 2017 J. Biol. Chem. pmid:28049734
O'Sullivan S and Dev KK Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases. 2017 Neuropharmacology pmid:27825807
Yanagida K and Hla T Vascular and Immunobiology of the Circulatory Sphingosine 1-Phosphate Gradient. 2017 Annu. Rev. Physiol. pmid:27813829
Zhao Z et al. Characterization of the Anticoagulant and Antithrombotic Properties of the Sphingosine 1-Phosphate Mimetic FTY720. 2017 Acta Haematol. pmid:27802432
González-Fernández B et al. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells. 2017 Biofactors pmid:27801960
McLean CJ et al. Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei. 2017 J. Lipid Res. pmid:27784725
Abraham C et al. Lessons Learned From Trials Targeting Cytokine Pathways in Patients With Inflammatory Bowel Diseases. 2017 Gastroenterology pmid:27780712
Katsuta E et al. Doxorubicin effect is enhanced by sphingosine-1-phosphate signaling antagonist in breast cancer. 2017 J. Surg. Res. pmid:29078883
Anjum I et al. Enhancement of S1P-induced contractile response in detrusor smooth muscle of rats having cystitis. 2017 Eur. J. Pharmacol. pmid:28882559
Haddadi N et al. "Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. 2017 Int J Mol Sci pmid:28869494
Bosteen MH et al. Effects of apolipoprotein M in uremic atherosclerosis. 2017 Atherosclerosis pmid:28866363
Olesch C et al. Beyond Immune Cell Migration: The Emerging Role of the Sphingosine-1-phosphate Receptor S1PR4 as a Modulator of Innate Immune Cell Activation. 2017 Mediators Inflamm. pmid:28848247
Egom EE et al. Determination of Sphingosine-1-Phosphate in Human Plasma Using Liquid Chromatography Coupled with Q-Tof Mass Spectrometry. 2017 Int J Mol Sci pmid:28820460
Swendeman SL et al. An engineered S1P chaperone attenuates hypertension and ischemic injury. 2017 Sci Signal pmid:28811382
Syed SN et al. S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1 or Lipocalin-2. 2017 Mediators Inflamm. pmid:28804221
Doan NB et al. Acid ceramidase confers radioresistance to glioblastoma cells. 2017 Oncol. Rep. pmid:28765947
Arish M et al. Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies. 2017 J. Recept. Signal Transduct. Res. pmid:28758826
Polzin A et al. Plasma sphingosine-1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. 2017 J. Mol. Cell. Cardiol. pmid:28709768
Innamorati G et al. Pleiotropic effects of sphingosine-1-phosphate signaling to control human chorionic mesenchymal stem cell physiology. 2017 Cell Death Dis pmid:28703804
Schmidt KG et al. Sphingosine-1-Phosphate Receptor 5 Modulates Early-Stage Processes during Fibrogenesis in a Mouse Model of Systemic Sclerosis: A Pilot Study. 2017 Front Immunol pmid:29033951
Alqinyah M et al. Regulator of G Protein Signaling 10 (Rgs10) Expression Is Transcriptionally Silenced in Activated Microglia by Histone Deacetylase Activity. 2017 Mol. Pharmacol. pmid:28031332
Patmanathan SN et al. Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. 2017 Cell. Signal. pmid:28302566
Li S et al. Sphingosine-1-phosphate activates the AKT pathway to inhibit chemotherapy induced human granulosa cell apoptosis. 2017 Gynecol. Endocrinol. pmid:28277139
Garnero P The Utility of Biomarkers in Osteoporosis Management. 2017 Mol Diagn Ther pmid:28271451
Zeng Y Endothelial glycocalyx as a critical signalling platform integrating the extracellular haemodynamic forces and chemical signalling. 2017 J. Cell. Mol. Med. pmid:28211170
Sun XJ et al. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis. 2017 Nephrol. Dial. Transplant. pmid:28206609
Janecke AR et al. Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. 2017 Hum. Mutat. pmid:28181337
Moritz E et al. Reference intervals for serum sphingosine-1-phosphate in the population-based Study of Health in Pomerania. 2017 Clin. Chim. Acta pmid:28159438
Winkler MS et al. Sphingosine-1-Phosphate: A Potential Biomarker and Therapeutic Target for Endothelial Dysfunction and Sepsis? 2017 Shock pmid:27922551
Chen T et al. Sphingosine-1 phosphate promotes intestinal epithelial cell proliferation via S1PR2. 2017 Front Biosci (Landmark Ed) pmid:27814635
Feuerborn R et al. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. 2017 Atherosclerosis pmid:28038379
Wang M et al. Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices. 2017 PLoS ONE pmid:29136008
Tran HB et al. Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD. 2017 PLoS ONE pmid:29112690
Mensah SA et al. Regeneration of glycocalyx by heparan sulfate and sphingosine 1-phosphate restores inter-endothelial communication. 2017 PLoS ONE pmid:29023478
Wang X et al. Sphingosine 1-phosphate alleviates Coxsackievirus B3-induced myocarditis by increasing invariant natural killer T cells. 2017 Exp. Mol. Pathol. pmid:28986246
Werth S et al. Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism. 2017 J. Endocrinol. pmid:28970286
Du Y et al. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/ Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway. 2017 Cell. Physiol. Biochem. pmid:28934733
Kuchler L et al. Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. 2017 Mol. Immunol. pmid:28846923
Garbowska M et al. Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes. 2017 J. Cell. Physiol. pmid:28369933
Turner VM and Mabbott NA Ageing adversely affects the migration and function of marginal zone B cells. 2017 Immunology pmid:28369800
Müller J et al. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration. 2017 Biomed Res Int pmid:28367448
King A et al. Sphingosine-1-Phosphate Prevents Egress of Hematopoietic Stem Cells From Liver to Reduce Fibrosis. 2017 Gastroenterology pmid:28363640
Wollny T et al. Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease. 2017 Int J Mol Sci pmid:28362332
Denimal D et al. Impairment of the Ability of HDL From Patients With Metabolic Syndrome but Without Diabetes Mellitus to Activate eNOS: Correction by S1P Enrichment. 2017 Arterioscler. Thromb. Vasc. Biol. pmid:28360087
Gusman DH and Shoemake C Evaluation and Optimization of designed Sphingosine-1-Phosphate (S1P) Receptor Subtype 1 Modulators for the Management of Multiple Sclerosis. 2017 Yale J Biol Med pmid:28356890
Andrieu G et al. Sphingosine 1-phosphate signaling through its receptor S1P promotes chromosome segregation and mitotic progression. 2017 Sci Signal pmid:28351953
Becker S et al. Low sphingosine-1-phosphate plasma levels are predictive for increased mortality in patients with liver cirrhosis. 2017 PLoS ONE pmid:28334008
Karunakaran I and van Echten-Deckert G Sphingosine 1-phosphate - A double edged sword in the brain. 2017 Biochim. Biophys. Acta pmid:28315304
Navarrete A et al. A metabolomic approach shows sphingosine 1-phosphate and lysophospholipids as mediators of the therapeutic effect of liver growth factor in emphysema. 2017 J Pharm Biomed Anal pmid:28314215
Al Fadel F et al. Involvement of Sphingosine 1-Phosphate in Palmitate-Induced Non-Alcoholic Fatty Liver Disease. 2016 Cell. Physiol. Biochem. pmid:28006772
Bigaud M et al. Pathophysiological Consequences of a Break in S1P1-Dependent Homeostasis of Vascular Permeability Revealed by S1P1 Competitive Antagonism. 2016 PLoS ONE pmid:28005953
Surya VN et al. Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. 2016 J R Soc Interface pmid:27974574
Soltau I et al. Serum-Sphingosine-1-Phosphate Concentrations Are Inversely Associated with Atherosclerotic Diseases in Humans. 2016 PLoS ONE pmid:27973607
Al Alam N and Kreydiyyeh SI FTY720P inhibits hepatic Na(+)-K(+) ATPase via S1PR2 and PGE2. 2016 Biochem. Cell Biol. pmid:27501354
Higashi K et al. Sphingosine-1-phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts. 2016 Bone pmid:27612439
Sasset L et al. Sphingolipid De Novo Biosynthesis: A Rheostat of Cardiovascular Homeostasis. 2016 Trends Endocrinol. Metab. pmid:27562337
Roviezzo F et al. Disodium cromoglycate inhibits asthma-like features induced by sphingosine-1-phosphate. 2016 Pharmacol. Res. pmid:27713021
Hemdan NY et al. Modulating sphingosine 1-phosphate signaling with DOP or FTY720 alleviates vascular and immune defects in mouse sepsis. 2016 Eur. J. Immunol. pmid:27683081
Chew WS et al. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. 2016 Pharmacol. Res. pmid:27663260
Hashimoto Y et al. Sphingosine-1-phosphate-enhanced Wnt5a promotes osteogenic differentiation in C3H10T1/2 cells. 2016 Cell Biol. Int. pmid:27486054
Viswanathan P et al. Differential elastic responses to barrier-altering agonists in two types of human lung endothelium. 2016 Biochem. Biophys. Res. Commun. pmid:27473658
Moruno Manchon JF et al. SPHK1/sphingosine kinase 1-mediated autophagy differs between neurons and SH-SY5Y neuroblastoma cells. 2016 Autophagy pmid:27467777
Nagahashi M et al. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. 2016 J. Lipid Res. pmid:27459945
Rumzhum NN et al. Effect of Sphingosine 1-Phosphate on Cyclo-Oxygenase-2 Expression, Prostaglandin E2 Secretion, and β2-Adrenergic Receptor Desensitization. 2016 Am. J. Respir. Cell Mol. Biol. pmid:26098693
Zhang XE et al. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement. 2016 PLoS ONE pmid:27187066
Ohtoyo M et al. Component of Caramel Food Coloring, THI, Causes Lymphopenia Indirectly via a Key Metabolic Intermediate. 2016 Cell Chem Biol pmid:27185637
Fleming JK et al. A novel approach for measuring sphingosine-1-phosphate and lysophosphatidic acid binding to carrier proteins using monoclonal antibodies and the Kinetic Exclusion Assay. 2016 J. Lipid Res. pmid:27444045
Barnawi J et al. Pro-phagocytic Effects of Thymoquinone on Cigarette Smoke-exposed Macrophages Occur by Modulation of the Sphingosine-1-phosphate Signalling System. 2016 COPD pmid:27144721
Jin L et al. The SphKs/S1P/S1PR1 axis in immunity and cancer: more ore to be mined. 2016 World J Surg Oncol pmid:27129720
Sanchez T Sphingosine-1-Phosphate Signaling in Endothelial Disorders. 2016 Curr Atheroscler Rep pmid:27115142
Crespo I et al. Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin. 2016 J. Pineal Res. pmid:27101794
Riganti L et al. Sphingosine-1-Phosphate (S1P) Impacts Presynaptic Functions by Regulating Synapsin I Localization in the Presynaptic Compartment. 2016 J. Neurosci. pmid:27098703
Trinh HK et al. Exploration of the Sphingolipid Metabolite, Sphingosine-1-phosphate and Sphingosine, as Novel Biomarkers for Aspirin-exacerbated Respiratory Disease. 2016 Sci Rep pmid:27830727
Tang X et al. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate. 2016 J. Lipid Res. pmid:26884614
Uranbileg B et al. Increased mRNA Levels of Sphingosine Kinases and S1P Lyase and Reduced Levels of S1P Were Observed in Hepatocellular Carcinoma in Association with Poorer Differentiation and Earlier Recurrence. 2016 PLoS ONE pmid:26886371
Chumanevich A et al. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2. 2016 Mediators Inflamm. pmid:26884643
Ko P et al. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion. 2016 Sci Rep pmid:26877098
Luo B et al. Erythropoeitin Signaling in Macrophages Promotes Dying Cell Clearance and Immune Tolerance. 2016 Immunity pmid:26872696
Li J et al. Overexpression of SphK1 enhances cell proliferation and invasion in triple-negative breast cancer via the PI3K/AKT signaling pathway. 2016 Tumour Biol. pmid:26857281
Petrache I and Berdyshev EV Ceramide Signaling and Metabolism in Pathophysiological States of the Lung. 2016 Annu. Rev. Physiol. pmid:26667073
Delgado A and Martínez-Cartro M Therapeutic Potential of the Modulation of Sphingosine-1-Phosphate Receptors. 2016 Curr. Med. Chem. pmid:26639095
Yamamoto S et al. A role of the sphingosine-1-phosphate (S1P)-S1P receptor 2 pathway in epithelial defense against cancer (EDAC). 2016 Mol. Biol. Cell pmid:26631556
Kakazu E et al. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. 2016 J. Lipid Res. pmid:26621917
Chen J et al. Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: Role of PPARγ. 2016 Biochim. Biophys. Acta pmid:26615875
Maczis M et al. Sphingosine-1-phosphate and estrogen signaling in breast cancer. 2016 Adv Biol Regul pmid:26601898
Gao D et al. Metabolomics study on the antitumor effect of marine natural compound flexibilide in HCT-116 colon cancer cell line. 2016 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:26859520
Scotti L et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. 2016 Mol. Hum. Reprod. pmid:27645281
Neubauer HA et al. An oncogenic role for sphingosine kinase 2. 2016 Oncotarget pmid:27588496
Zeng Y et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. 2016 Oncotarget pmid:27556509
Nagahashi M et al. Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods. 2016 J Mammary Gland Biol Neoplasia pmid:27194029
Nigro E et al. Role of adiponectin in sphingosine-1-phosphate induced airway hyperresponsiveness and inflammation. 2016 Pharmacol. Res. pmid:26462929
Serdar M et al. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia. 2016 Brain Behav. Immun. pmid:26456693
Arish M et al. Sphingosine-1-phosphate signaling: unraveling its role as a drug target against infectious diseases. 2016 Drug Discov. Today pmid:26456576
Melnik BC Rosacea: The Blessing of the Celts - An Approach to Pathogenesis Through Translational Research. 2016 Acta Derm. Venereol. pmid:26304030