Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Sarcoma 180 D012510 21 associated lipids
Edema D004487 152 associated lipids
Arthritis D001168 41 associated lipids
Heart Failure D006333 36 associated lipids
Pulmonary Edema D011654 23 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypersensitivity D006967 22 associated lipids
Acne Vulgaris D000152 35 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Pereira JP et al. A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. 2010 PLoS ONE pmid:20174580
Abdel Hadi L et al. Sphingosine Kinase 2 and Ceramide Transport as Key Targets of the Natural Flavonoid Luteolin to Induce Apoptosis in Colon Cancer Cells. 2015 PLoS ONE pmid:26580959
Zhong Y et al. Nephrokeli, a Chinese herbal formula, may improve IgA nephropathy through regulation of the sphingosine-1-phosphate pathway. 2015 PLoS ONE pmid:25633986
Berdyshev EV et al. Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase. 2011 PLoS ONE pmid:21304987
Gomes L et al. Sphingosine 1-phosphate in acute dengue infection. 2014 PLoS ONE pmid:25409037
Yang W et al. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation. 2014 PLoS ONE pmid:25188412
Beckham TH et al. Acid ceramidase promotes nuclear export of PTEN through sphingosine 1-phosphate mediated Akt signaling. 2013 PLoS ONE pmid:24098536
Kurano M et al. Involvement of Band3 in the efflux of sphingosine 1-phosphate from erythrocytes. 2017 PLoS ONE pmid:28494002
Riccitelli E et al. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival. 2013 PLoS ONE pmid:23826381
Kondo S et al. Memo has a novel role in S1P signaling and is [corrected] crucial for vascular development. 2014 PLoS ONE pmid:24714781
Al-Jarallah A and Oriowo M The effect of sphingosine-1-phosphate on colonic smooth muscle contractility: Modulation by TNBS-induced colitis. 2017 PLoS ONE pmid:28493876
Yasuo M et al. Fenretinide causes emphysema, which is prevented by sphingosine 1-phoshate. 2013 PLoS ONE pmid:23326540
Tibolla G et al. Class II phosphoinositide 3-kinases contribute to endothelial cells morphogenesis. 2013 PLoS ONE pmid:23320105
Lim M et al. The role of sphingosine kinase 1/sphingosine-1-phosphate pathway in the myogenic tone of posterior cerebral arteries. 2012 PLoS ONE pmid:22532844
Jongsma M et al. LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. 2011 PLoS ONE pmid:22195035
Lepletier A et al. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease. 2014 PLoS Negl Trop Dis pmid:25330249
Walls SM et al. Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. 2013 PLoS Genet. pmid:24339790
Chen J et al. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. 2014 PLoS Genet. pmid:25356849
Wang K et al. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. 2015 PLoS Genet. pmid:26474409
Yuan S et al. Lipid receptor S1P₁ activation scheme concluded from microsecond all-atom molecular dynamics simulations. 2013 PLoS Comput. Biol. pmid:24098103
Kempf A et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. 2014 PLoS Biol. pmid:24453941
Serafimidis I et al. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling. 2017 PLoS Biol. pmid:28248965
Vito CD et al. Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications. 2016 Platelets pmid:26950429
Nugent D and Xu Y Sphingosine-1-phosphate: characterization of its inhibition of platelet aggregation. 2000 Platelets pmid:10938902
Puli MR et al. Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. 2016 Planta pmid:27233507
Michaelson LV et al. Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. 2009 Plant Physiol. pmid:18978071
Worrall D et al. Involvement of sphingosine kinase in plant cell signalling. 2008 Plant J. pmid:18557834
Pandey S and Assmann SM The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. 2004 Plant Cell pmid:15155892
Kerage D et al. Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. 2014 Placenta pmid:24411702
Brünnert D et al. Sphingosine 1-phosphate regulates IL-8 expression and secretion via S1PR1 and S1PR2 receptors-mediated signaling in extravillous trophoblast derived HTR-8/SVneo cells. 2015 Placenta pmid:26321412
Erkhembaatar LO et al. Increased expression of sphingosine kinase in the amnion during labor. 2013 Placenta pmid:23462226
Madhunapantula SV et al. Targeting sphingosine kinase-1 to inhibit melanoma. 2012 Pigment Cell Melanoma Res pmid:22236408
Zhao CG et al. Sphingosine-1-phosphate is a possible fibrogenic factor in gluteal muscle fibrosis. 2013 Physiol Res pmid:23869887
Korbelik M et al. Monitoring ceramide and sphingosine-1-phosphate levels in cancer cells and macrophages from tumours treated by photodynamic therapy. 2012 Photochem. Photobiol. Sci. pmid:22354109
Sauer B et al. Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. 2005 Pharmazie pmid:15881612
Ebenezer DL et al. Targeting sphingosine-1-phosphate signaling in lung diseases. 2016 Pharmacol. Ther. pmid:27621206
Pyne S and Pyne N Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. 2000 Pharmacol. Ther. pmid:11150592
Edmonds Y et al. Development of small-molecule inhibitors of sphingosine-1-phosphate signaling. 2011 Pharmacol. Ther. pmid:21906625
Oskeritzian CA et al. Sphingosine-1-phosphate in allergic responses, asthma and anaphylaxis. 2007 Pharmacol. Ther. pmid:17669501
Nakagawa Y and Chiba K Diversity and plasticity of microglial cells in psychiatric and neurological disorders. 2015 Pharmacol. Ther. pmid:26129625
Takabe K et al. "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. 2008 Pharmacol. Rev. pmid:18552276
Roviezzo F et al. Disodium cromoglycate inhibits asthma-like features induced by sphingosine-1-phosphate. 2016 Pharmacol. Res. pmid:27713021
Chew WS et al. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. 2016 Pharmacol. Res. pmid:27663260
Yang Z et al. TGR5 activation suppressed S1P/S1P2 signaling and resisted high glucose-induced fibrosis in glomerular mesangial cells. 2016 Pharmacol. Res. pmid:27317945
Ghasemi R et al. Integrated sphingosine-1 phosphate signaling in the central nervous system: From physiological equilibrium to pathological damage. 2016 Pharmacol. Res. pmid:26772814
Nigro E et al. Role of adiponectin in sphingosine-1-phosphate induced airway hyperresponsiveness and inflammation. 2016 Pharmacol. Res. pmid:26462929
Hla T Signaling and biological actions of sphingosine 1-phosphate. 2003 Pharmacol. Res. pmid:12676514
Buccoliero R and Futerman AH The roles of ceramide and complex sphingolipids in neuronal cell function. 2003 Pharmacol. Res. pmid:12676515
Di Menna L et al. Fingolimod protects cultured cortical neurons against excitotoxic death. 2013 Pharmacol. Res. pmid:23073075
Chiba Y et al. Downregulation of sphingosine-1-phosphate receptors in bronchial smooth muscle of mouse experimental asthma. 2010 Pharmacol. Res. pmid:20554039