Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Vascular Diseases D014652 16 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Tuberculosis D014376 20 associated lipids
Sarcoma 180 D012510 21 associated lipids
Anemia D000740 21 associated lipids
Hypersensitivity D006967 22 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Fujii S [Atherosclerosis, Chronic Inflammation, and Thrombosis: In Search of the Missing Link in Laboratory Medicine]. 2015 Rinsho Byori pmid:26524900
Wang R et al. Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration. 2015 J. Biol. Chem. pmid:26534962
Yu H et al. Effect of sphingosine-1-phosphate and myoblast transplantation on rat acute myocardial infarction. 2015 Genet. Mol. Res. pmid:26535699
Wang Z et al. Decreased Splenic CD4(+) T-Lymphocytes in Apolipoprotein M Gene Deficient Mice. 2015 Biomed Res Int pmid:26543853
Sordillo PP et al. Review: The Prolonged QT Interval: Role of Pro-inflammatory Cytokines, Reactive Oxygen Species and the Ceramide and Sphingosine-1 Phosphate Pathways. In Vivo pmid:26546519
Campos LS et al. Filamin A Expression Negatively Regulates Sphingosine-1-Phosphate-Induced NF-κB Activation in Melanoma Cells by Inhibition of Akt Signaling. 2016 Mol. Cell. Biol. pmid:26552704
Realini N et al. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. 2016 J. Biol. Chem. pmid:26553872
Zhao C et al. Chemical Hypoxia Brings to Light Altered Autocrine Sphingosine-1-Phosphate Signalling in Rheumatoid Arthritis Synovial Fibroblasts. 2015 Mediators Inflamm. pmid:26556954
Tang H et al. Expression of Sphingosine-1-phosphate (S1P) on the cerebral vasospasm after subarachnoid hemorrhage in rabbits. 2015 Acta Cir Bras pmid:26560422
Moon E et al. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling. 2015 Mediators Inflamm. pmid:26576074
Cuvillier O [SphingomabTM, an anti-sphingosine 1-phosphate antibody to inhibit hypoxia]. 2015 Med Sci (Paris) pmid:26576602
Yuasa D et al. C1q/TNF-related protein-1 functions to protect against acute ischemic injury in the heart. 2016 FASEB J. pmid:26578687
Abdel Hadi L et al. Sphingosine Kinase 2 and Ceramide Transport as Key Targets of the Natural Flavonoid Luteolin to Induce Apoptosis in Colon Cancer Cells. 2015 PLoS ONE pmid:26580959
Rana A and Sharma S Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: Possible involvement of glycogen synthase kinase 3β and mitochondrial permeability transition pore. 2016 Clin. Exp. Pharmacol. Physiol. pmid:26582369
Pyne NJ and Tigyi GJ A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. 2016 Prog. Lipid Res. pmid:26584871
Zhang F et al. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. 2016 Am. J. Physiol. Heart Circ. Physiol. pmid:26589326
Maczis M et al. Sphingosine-1-phosphate and estrogen signaling in breast cancer. 2016 Adv Biol Regul pmid:26601898
Mahajan-Thakur S et al. Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. 2015 Mediators Inflamm. pmid:26604433
Iwabuchi K et al. Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. 2015 Mediators Inflamm. pmid:26609196
Chen J et al. Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: Role of PPARγ. 2016 Biochim. Biophys. Acta pmid:26615875
Kakazu E et al. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. 2016 J. Lipid Res. pmid:26621917
Yamamoto S et al. A role of the sphingosine-1-phosphate (S1P)-S1P receptor 2 pathway in epithelial defense against cancer (EDAC). 2016 Mol. Biol. Cell pmid:26631556
Delgado A and Martínez-Cartro M Therapeutic Potential of the Modulation of Sphingosine-1-Phosphate Receptors. 2016 Curr. Med. Chem. pmid:26639095
Petrache I and Berdyshev EV Ceramide Signaling and Metabolism in Pathophysiological States of the Lung. 2016 Annu. Rev. Physiol. pmid:26667073
Sano N et al. New drug delivery system for liver sinusoidal endothelial cells for ischemia-reperfusion injury. 2015 World J. Gastroenterol. pmid:26668502
Fan A et al. Liver X receptor-α and miR-130a-3p regulate expression of sphingosine 1-phosphate receptor 2 in human umbilical vein endothelial cells. 2016 Am. J. Physiol., Cell Physiol. pmid:26669941
Ottenlinger F et al. Fingolimod targeting protein phosphatase 2A differently affects IL-33 induced IL-2 and IFN-γ production in CD8(+) lymphocytes. 2016 Eur. J. Immunol. pmid:26683421
Gomez-Muñoz A et al. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. 2016 Prog. Lipid Res. pmid:26703189
Kim YH and Tabata Y Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure. 2016 J Biomed Mater Res A pmid:26704185
Deutsch G et al. Extensive macrophage accumulation in young and old Niemann-Pick C1 model mice involves the alternative, M2, activation pathway and inhibition of macrophage apoptosis. 2016 Gene pmid:26707209
Beach JA et al. Sphingosine kinase 1 is required for TGF-β mediated fibroblastto- myofibroblast differentiation in ovarian cancer. 2016 Oncotarget pmid:26716409
Deniz U et al. A systematic methodology for large scale compound screening: A case study on the discovery of novel S1PL inhibitors. 2016 J. Mol. Graph. Model. pmid:26724452
Abu Khweek A et al. The Sphingosine-1-Phosphate Lyase (LegS2) Contributes to the Restriction of Legionella pneumophila in Murine Macrophages. 2016 PLoS ONE pmid:26741365
Sundaram K et al. Loss of neutral ceramidase protects cells from nutrient- and energy -deprivation-induced cell death. 2016 Biochem. J. pmid:26747710
Morel S et al. Sphingosine-1-phosphate reduces ischaemia-reperfusion injury by phosphorylating the gap junction protein Connexin43. 2016 Cardiovasc. Res. pmid:26762268
Ghasemi R et al. Integrated sphingosine-1 phosphate signaling in the central nervous system: From physiological equilibrium to pathological damage. 2016 Pharmacol. Res. pmid:26772814
Dillmann C et al. S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-α Production by Human Plasmacytoid Dendritic Cells. 2016 J. Immunol. pmid:26783340
Zhang Y et al. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC) Damages. 2016 PLoS ONE pmid:26788916
Chapurlat RD and Confavreux CB Novel biological markers of bone: from bone metabolism to bone physiology. 2016 Rheumatology (Oxford) pmid:26790456
Tran HB et al. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720. 2016 J. Leukoc. Biol. pmid:26792820
Marycz K et al. The influence of metal-based biomaterials functionalized with sphingosine-1-phosphate on the cellular response and osteogenic differentaion potenial of human adipose derived mesenchymal stem cells in vitro. 2016 J Biomater Appl pmid:26801473
Bock S et al. Sphingosine 1-phospate differentially modulates maturation and function of human Langerhans-like cells. 2016 J. Dermatol. Sci. pmid:26803226
Santos-Cortez RL et al. Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2. 2016 Am. J. Hum. Genet. pmid:26805784
Farez MF and Correale J Sphingosine 1-phosphate signaling in astrocytes: Implications for progressive multiple sclerosis. 2016 J. Neurol. Sci. pmid:26810518
Wiltshire R et al. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. 2016 Sci Rep pmid:26813587
Pászti-Gere E et al. Reinforced Epithelial Barrier Integrity via Matriptase Induction with Sphingosine-1-Phosphate Did Not Result in Disturbances in Physiological Redox Status. 2016 Oxid Med Cell Longev pmid:26823955
Messias CV et al. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. 2016 PLoS ONE pmid:26824863
Kim SE et al. The Role of Sphingosine-1-Phosphate in Adipogenesis of Graves' Orbitopathy. 2016 Invest. Ophthalmol. Vis. Sci. pmid:26830367
Camaré C et al. The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL. 2016 Free Radic. Biol. Med. pmid:26855418
Li J et al. Overexpression of SphK1 enhances cell proliferation and invasion in triple-negative breast cancer via the PI3K/AKT signaling pathway. 2016 Tumour Biol. pmid:26857281