Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Melanoma D008545 69 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Asthma D001249 52 associated lipids
Weight Gain D015430 101 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Proteinuria D011507 30 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Giannouli CC et al. Visualizing S1P-directed cellular egress by intravital imaging. 2014 Biochim. Biophys. Acta pmid:24090699
Zhang Y et al. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. 2014 J. Clin. Invest. pmid:24837436
Brünnert D et al. Lysophosphatidic acid and sphingosine 1-phosphate metabolic pathways and their receptors are differentially regulated during decidualization of human endometrial stromal cells. 2014 Mol. Hum. Reprod. pmid:24994816
Nagamatsu T et al. Emerging roles for lysophospholipid mediators in pregnancy. 2014 Am. J. Reprod. Immunol. pmid:24689547
Takeo T et al. Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. 2014 Cryobiology pmid:24201107
Watanabe C et al. Antagonism and synergy of single chain sphingolipids sphingosine and sphingosine-1-phosphate toward lipid bilayer properties. Consequences for their role as cell fate regulators. 2014 Langmuir pmid:25386673
Sutter I et al. Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate. 2014 J. Lipid Res. pmid:24950692
Adamson RH et al. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24531813
Rosen H et al. The organization of the sphingosine 1-phosphate signaling system. 2014 Curr. Top. Microbiol. Immunol. pmid:24728591
Hanson MA and Peach R Structural biology of the S1P1 receptor. 2014 Curr. Top. Microbiol. Immunol. pmid:24728592
Yang W et al. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation. 2014 PLoS ONE pmid:25188412
Chen J et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. 2014 Am. J. Respir. Crit. Care Med. pmid:25180446
Xiong Y and Hla T S1P control of endothelial integrity. 2014 Curr. Top. Microbiol. Immunol. pmid:24728594
Mendelson K et al. Sphingosine 1-phosphate signalling. 2014 Development pmid:24346695
Rauch BH Sphingosine 1-phosphate as a link between blood coagulation and inflammation. 2014 Cell. Physiol. Biochem. pmid:24977491
Mahajan-Thakur S et al. Sphingosine-1-phosphate induces thrombin receptor PAR-4 expression to enhance cell migration and COX-2 formation in human monocytes. 2014 J. Leukoc. Biol. pmid:24990321
Korbelik M et al. Ceramide and sphingosine-1-phosphate act as photodynamic therapy-elicited damage-associated molecular patterns: cell surface exposure. 2014 Int. Immunopharmacol. pmid:24713544
Gatfield J et al. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling. 2014 Cell. Signal. pmid:24704119
Mendes-Braz M et al. The effects of glucose and lipids in steatotic and non-steatotic livers in conditions of partial hepatectomy under ischaemia-reperfusion. 2014 Liver Int. pmid:24107124
Baranowski M et al. Ultramarathon run markedly reduces plasma sphingosine-1-phosphate concentration. 2014 Int J Sport Nutr Exerc Metab pmid:24092763
Speak AO et al. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. 2014 Blood pmid:24235134
Nagahashi M et al. Sphingosine-1-phosphate in chronic intestinal inflammation and cancer. 2014 Adv Biol Regul pmid:24210073
Lee H et al. 4-Deoxypyridoxine improves the viability of isolated pancreatic islets ex vivo. 2013 May-Jun Islets pmid:23756681
Egom EE et al. Activation of sphingosine-1-phosphate signalling as a potential underlying mechanism of the pleiotropic effects of statin therapy. 2013 May-Jun Crit Rev Clin Lab Sci pmid:23885725
Ratajczak MZ et al. An emerging link in stem cell mobilization between activation of the complement cascade and the chemotactic gradient of sphingosine-1-phosphate. 2013 Jul-Aug Prostaglandins Other Lipid Mediat. pmid:22981511
Morozov VI et al. Sphingosine-1-phosphate: distribution, metabolism and role in the regulation of cellular functions. 2013 Jan-Feb Ukr Biokhim Zh (1999) pmid:23534286
Saba JD and de la Garza-Rodea AS S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. 2013 Biochim. Biophys. Acta pmid:22750505
Watson DG et al. The roles of sphingosine kinases 1 and 2 in regulating the Warburg effect in prostate cancer cells. 2013 Cell. Signal. pmid:23314175
Ohkawa R et al. [Sphingolipids, possible biomarkers for atherosclerotic disorders]. 2013 Rinsho Byori pmid:24369591
Dziak R The role of sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) in regulation of osteoclastic and osteoblastic cells. 2013 Immunol. Invest. pmid:24004055
Camacho L et al. Acid ceramidase as a therapeutic target in metastatic prostate cancer. 2013 J. Lipid Res. pmid:23423838
Kawahara S et al. Sphingosine kinase 1 plays a role in the upregulation of CD44 expression through extracellular signal-regulated kinase signaling in human colon cancer cells. 2013 Anticancer Drugs pmid:23426175
Yang L et al. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. 2013 J. Hepatol. pmid:23466305
Reichardt P et al. A role for LFA-1 in delaying T-lymphocyte egress from lymph nodes. 2013 EMBO J. pmid:23443048
Kendig DM et al. Sphingosine-1-phosphate induced contraction of bladder smooth muscle. 2013 Eur. J. Pharmacol. pmid:24120660
Usatyuk PV et al. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction. 2013 PLoS ONE pmid:23667561
Starzyńska T et al. An intensified systemic trafficking of bone marrow-derived stem/progenitor cells in patients with pancreatic cancer. 2013 J. Cell. Mol. Med. pmid:23672538
Osawa Y et al. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer. 2013 J. Clin. Invest. pmid:23298833
Xu Y et al. Low sphingosine-1-phosphate impairs lung dendritic cells in cystic fibrosis. 2013 Am. J. Respir. Cell Mol. Biol. pmid:23239501
Del Galdo S et al. The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis. 2013 Cell. Signal. pmid:23993968
Pantoja M et al. Genetic elevation of sphingosine 1-phosphate suppresses dystrophic muscle phenotypes in Drosophila. 2013 Development pmid:23154413
Takahashi K et al. Novel therapy for liver regeneration by increasing the number of platelets. 2013 Surg. Today pmid:23180116
Lidington D et al. Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness. 2013 Cardiovasc. Res. pmid:23180720
Bruni P and Donati C Role of sphingosine 1-phosphate in skeletal muscle cell biology. 2013 Handb Exp Pharmacol pmid:23563671
Vessey DA et al. FTY720 postconditions isolated perfused heart by a mechanism independent of sphingosine kinase 2 and different from S1P or ischemic postconditioning. 2013 Med Sci Monit Basic Res pmid:23567658
Wallington-Beddoe CT et al. Oncogenic properties of sphingosine kinases in haematological malignancies. 2013 Br. J. Haematol. pmid:23521541
Bendall LJ and Basnett J Role of sphingosine 1-phosphate in trafficking and mobilization of hematopoietic stem cells. 2013 Curr. Opin. Hematol. pmid:23507960
Park K et al. Resveratrol stimulates sphingosine-1-phosphate signaling of cathelicidin production. 2013 J. Invest. Dermatol. pmid:23856934
Ito S et al. Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. 2013 Coron. Artery Dis. pmid:24212262
Lim SH et al. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. 2013 Integr Biol (Camb) pmid:24190477