Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Fibrosis D005355 23 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Psoriasis D011565 47 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Powell JA et al. Targeting sphingosine kinase 1 induces MCL1-dependent cell death in acute myeloid leukemia. 2017 Blood pmid:27956387
Miyabe C et al. A sphingosine 1-phosphate receptor agonist ameliorates animal model of vasculitis. 2017 Inflamm. Res. pmid:27942751
Williams PA et al. Alginate-Chitosan Hydrogels Provide a Sustained Gradient of Sphingosine-1-Phosphate for Therapeutic Angiogenesis. 2017 Ann Biomed Eng pmid:27904998
Mao-Draayer Y et al. The sphingosine-1-phosphate receptor: A novel therapeutic target for multiple sclerosis and other autoimmune diseases. 2017 Clin. Immunol. pmid:27890706
Lee MH et al. S1P in HDL promotes interaction between SR-BI and S1PR1 and activates S1PR1-mediated biological functions: calcium flux and S1PR1 internalization. 2017 J. Lipid Res. pmid:27881715
Ruiz M et al. High-Density Lipoprotein-Associated Apolipoprotein M Limits Endothelial Inflammation by Delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1. 2017 Arterioscler. Thromb. Vasc. Biol. pmid:27879252
Barnawi J et al. Reduced DNA methylation of sphingosine-1 phosphate receptor 5 in alveolar macrophages in COPD: A potential link to failed efferocytosis. 2017 Respirology pmid:27868302
Frias MA et al. High-density lipoprotein-associated sphingosine-1-phosphate activity in heterozygous familial hypercholesterolaemia. 2017 Eur. J. Clin. Invest. pmid:27861771
Fang V et al. Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-γ response. 2017 Nat. Immunol. pmid:27841869
Vogt D and Stark H Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. 2017 Med Res Rev pmid:27480072
Swendeman SL et al. An engineered S1P chaperone attenuates hypertension and ischemic injury. 2017 Sci Signal pmid:28811382
Syed SN et al. S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1 or Lipocalin-2. 2017 Mediators Inflamm. pmid:28804221
Doan NB et al. Acid ceramidase confers radioresistance to glioblastoma cells. 2017 Oncol. Rep. pmid:28765947
Arish M et al. Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies. 2017 J. Recept. Signal Transduct. Res. pmid:28758826
Polzin A et al. Plasma sphingosine-1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. 2017 J. Mol. Cell. Cardiol. pmid:28709768
Innamorati G et al. Pleiotropic effects of sphingosine-1-phosphate signaling to control human chorionic mesenchymal stem cell physiology. 2017 Cell Death Dis pmid:28703804
Bougault C et al. Involvement of sphingosine kinase/sphingosine 1-phosphate metabolic pathway in spondyloarthritis. 2017 Bone pmid:28684192
Tsai CH et al. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression. 2017 Mol Oncol pmid:28672103
Schmidt KG et al. Sphingosine-1-Phosphate Receptor 5 Modulates Early-Stage Processes during Fibrogenesis in a Mouse Model of Systemic Sclerosis: A Pilot Study. 2017 Front Immunol pmid:29033951
Xie Z et al. Targeting sphingosine-1-phosphate signaling for cancer therapy. 2017 Sci China Life Sci pmid:28623546
Yanagida K et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. 2017 Proc. Natl. Acad. Sci. U.S.A. pmid:28396408
Kurano M et al. Involvement of Band3 in the efflux of sphingosine 1-phosphate from erythrocytes. 2017 PLoS ONE pmid:28494002
Janecke AR et al. Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. 2017 Hum. Mutat. pmid:28181337
Moritz E et al. Reference intervals for serum sphingosine-1-phosphate in the population-based Study of Health in Pomerania. 2017 Clin. Chim. Acta pmid:28159438
Winkler MS et al. Sphingosine-1-Phosphate: A Potential Biomarker and Therapeutic Target for Endothelial Dysfunction and Sepsis? 2017 Shock pmid:27922551
Al-Jarallah A and Oriowo M The effect of sphingosine-1-phosphate on colonic smooth muscle contractility: Modulation by TNBS-induced colitis. 2017 PLoS ONE pmid:28493876
Chen T et al. Sphingosine-1 phosphate promotes intestinal epithelial cell proliferation via S1PR2. 2017 Front Biosci (Landmark Ed) pmid:27814635
Beider K et al. The Sphingosine-1-Phosphate Modulator FTY720 Targets Multiple Myeloma via the CXCR4/CXCL12 Pathway. 2017 Clin. Cancer Res. pmid:27697999
Thieme M et al. Sphingosine-1-phosphate modulators in inflammatory skin diseases - lining up for clinical translation. 2017 Exp. Dermatol. pmid:27574180
Rohrbach T et al. Sphingosine kinase and sphingosine-1-phosphate in liver pathobiology. 2017 Crit. Rev. Biochem. Mol. Biol. pmid:28618839
Vijayan M et al. Sphingosine 1-Phosphate Lyase Enhances the Activation of IKKε To Promote Type I IFN-Mediated Innate Immune Responses to Influenza A Virus Infection. 2017 J. Immunol. pmid:28600291
White CR et al. High-Density Lipoprotein Regulation of Mitochondrial Function. 2017 Adv. Exp. Med. Biol. pmid:28551800
Dany M and Elston D Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa. 2017 J. Am. Acad. Dermatol. pmid:28551069
Mendoza A et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. 2017 Nature pmid:28538737
Ma S et al. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis. 2017 Dev. Cell pmid:28535372
Meshcheryakova A et al. Sphingosine 1-phosphate signaling in bone remodeling: multifaceted roles and therapeutic potential. 2017 Expert Opin. Ther. Targets pmid:28524744
Ko J et al. Sphingosine-1-Phosphate Mediates Fibrosis in Orbital Fibroblasts in Graves' Orbitopathy. 2017 Invest. Ophthalmol. Vis. Sci. pmid:28492873
Aoyama-Araki Y et al. Sphingosine-1-Phosphate (S1P)-Related Response of Human Conjunctival Fibroblasts After Filtration Surgery for Glaucoma. 2017 Invest. Ophthalmol. Vis. Sci. pmid:28418499
Tafelmeier M et al. Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of pro-coagulant platelet extracellular vesicles. 2017 J. Steroid Biochem. Mol. Biol. pmid:27163393
Rieck M et al. Ceramide synthase 2 facilitates S1P-dependent egress of thymocytes into the circulation in mice. 2017 Eur. J. Immunol. pmid:28198542
Bruno M et al. Sphingosine 1-phosphate signaling axis mediates fibroblast growth factor 2-induced proliferation and survival of murine auditory neuroblasts. 2017 Biochim. Biophys. Acta pmid:28188805
Qi H et al. Analysis of sphingolipids in human corneal fibroblasts from normal and keratoconus patients. 2017 J. Lipid Res. pmid:28188148
Ren K et al. ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs. 2017 J. Physiol. Biochem. pmid:28181168
Ruiz M et al. HDL-associated ApoM is anti-apoptotic by delivering sphingosine 1-phosphate to S1P1 & S1P3 receptors on vascular endothelium. 2017 Lipids Health Dis pmid:28179022
Moruno-Manchon JF et al. Inhibiting sphingosine kinase 2 mitigates mutant Huntingtin-induced neurodegeneration in neuron models of Huntington disease. 2017 Hum. Mol. Genet. pmid:28175299
Rojas-Canales D et al. Local Sphingosine Kinase 1 Activity Improves Islet Transplantation. 2017 Diabetes pmid:28174291
Dela Paz NG et al. Shear stress induces Gα activation independently of G protein-coupled receptor activation in endothelial cells. 2017 Am. J. Physiol., Cell Physiol. pmid:28148497
Green CL et al. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. 2017 Aging Cell pmid:28139067
Vishwakarma S et al. Altered Expression of Sphingosine-1-Phosphate Metabolizing Enzymes in Oral Cancer Correlate With Clinicopathological Attributes. 2017 Cancer Invest. pmid:28135860
Kurano M et al. Involvement of CETP (Cholesteryl Ester Transfer Protein) in the Shift of Sphingosine-1-Phosphate Among Lipoproteins and in the Modulation of its Functions. 2017 Arterioscler. Thromb. Vasc. Biol. pmid:28126827