Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Fibrosis D005355 23 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Psoriasis D011565 47 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Kupperman E et al. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. 2000 Nature pmid:10910360
Prieschl EE and Baumruker T Beyond a structural component: sphingolipids in immunology. 2000 Arch. Immunol. Ther. Exp. (Warsz.) pmid:10912620
Kozawa O et al. Sphingosine 1-phosphate amplifies phosphoinositide hydrolysis stimulated by prostaglandin f2 alpha in osteoblasts: involvement of p38MAP kinase. 2000 Prostaglandins Leukot. Essent. Fatty Acids pmid:10913228
Nanjundan M and Possmayer F Characterization of the pulmonary N-ethylmaleimide-insensitive phosphatidate phosphohydrolase. 2000 Jul-Aug Exp. Lung Res. pmid:10914334
Ikeda H et al. Biological activities of novel lipid mediator sphingosine 1-phosphate in rat hepatic stellate cells. 2000 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:10915638
Takeshita A et al. Selective stimulation by ceramide of the expression of the alpha isoform of retinoic acid and retinoid X receptors in osteoblastic cells. A role of sphingosine 1-phosphate-mediated AP-1 in the ligand-dependent transcriptional activity of these receptors. 2000 J. Biol. Chem. pmid:10915783
Pyne S et al. Extracellular actions of sphingosine I-phosphate through endothelial differentiation gene products in mammalian cells: role in regulating proliferation and apoptosis. 1999 Biochem. Soc. Trans. pmid:10917611
Igarashi J and Michel T Agonist-modulated targeting of the EDG-1 receptor to plasmalemmal caveolae. eNOS activation by sphingosine 1-phosphate and the role of caveolin-1 in sphingolipid signal transduction. 2000 J. Biol. Chem. pmid:10921915
Sabbadini RA et al. The role of sphingolipids in the control of skeletal muscle function: a review. 1999 Ital J Neurol Sci pmid:10937863
Nugent D and Xu Y Sphingosine-1-phosphate: characterization of its inhibition of platelet aggregation. 2000 Platelets pmid:10938902
Young KW et al. Effect of dimethylsphingosine on muscarinic M(3) receptor signalling in SH-SY5Y cells. 2000 Eur. J. Pharmacol. pmid:10940357
Davaille J et al. Antiproliferative properties of sphingosine 1-phosphate in human hepatic myofibroblasts. A cyclooxygenase-2 mediated pathway. 2000 J. Biol. Chem. pmid:10942778
Okamoto H et al. Sphingosine 1-phosphate stimulates G(i)- and Rho-mediated vascular endothelial cell spreading and migration. 2000 Thromb. Res. pmid:10942792
Pitson SM et al. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. 2000 J. Biol. Chem. pmid:10944534
Bischoff A et al. Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. 2000 Br. J. Pharmacol. pmid:10952677
Bischoff A et al. Sphingosine-1-phosphate reduces rat renal and mesenteric blood flow in vivo in a pertussis toxin-sensitive manner. 2000 Br. J. Pharmacol. pmid:10952678
Alemany R et al. Stimulation of sphingosine-1-phosphate formation by the P2Y(2) receptor in HL-60 cells: Ca(2+) requirement and implication in receptor-mediated Ca(2+) mobilization, but not MAP kinase activation. 2000 Mol. Pharmacol. pmid:10953041
Young KW et al. Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. 2000 J. Biol. Chem. pmid:10954727
Peyruchaud O and Mosher DF Differential stimulation of signaling pathways initiated by Edg-2 in response to lysophosphatidic acid or sphingosine-1-phosphate. 2000 Cell. Mol. Life Sci. pmid:10961347
MacLennan AJ et al. Antisense studies in PC12 cells suggest a role for H218, a sphingosine 1-phosphate receptor, in growth-factor-induced cell-cell interaction and neurite outgrowth. 2000 Dev. Neurosci. pmid:10965150
Nakajima N et al. Expression and characterization of Edg-1 receptors in rat cardiomyocytes: calcium deregulation in response to sphingosine 1-phosphate. 2000 Eur. J. Biochem. pmid:10971577
Parrill AL et al. Identification of Edg1 receptor residues that recognize sphingosine 1-phosphate. 2000 J. Biol. Chem. pmid:10982820
Casper RF and Jurisicova A Protecting the female germ line from cancer therapy. 2000 Nat. Med. pmid:11017136
Morita Y et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. 2000 Nat. Med. pmid:11017141
Meacci E et al. Permissive role of protein kinase C alpha but not protein kinase C delta in sphingosine 1-phosphate-induced Rho A activation in C2C12 myoblasts. 2000 FEBS Lett. pmid:11018530
Kozawa O et al. Enhancement by sphingosine 1-phosphate in vasopressin-induced phosphoinositide hydrolysis in aortic smooth-muscle cells: involvement of p38 MAP kinase. 2000 J. Cell. Biochem. pmid:11029753
Sato TN A new role of lipid receptors in vascular and cardiac morphogenesis. 2000 J. Clin. Invest. pmid:11032853
Liu Y et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. 2000 J. Clin. Invest. pmid:11032855
Shimizu H et al. Sphingosine 1-phosphate stimulates insulin secretion in HIT-T 15 cells and mouse islets. 2000 Endocr. J. pmid:11036869
English D et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. 2000 FASEB J. pmid:11053247
Ohmori T et al. G(i)-mediated Cas tyrosine phosphorylation in vascular endothelial cells stimulated with sphingosine 1-phosphate: possible involvement in cell motility enhancement in cooperation with Rho-mediated pathways. 2001 J. Biol. Chem. pmid:11056155
Malek RL et al. Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. 2001 J. Biol. Chem. pmid:11069896
Edsall L et al. Enzymatic method for measurement of sphingosine 1-phosphate. 2000 Meth. Enzymol. pmid:11070858
Sullards MC Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry. 2000 Meth. Enzymol. pmid:11070861
Van Brocklyn JR and Spiegel S Binding of sphingosine 1-phosphate to cell surface receptors. 2000 Meth. Enzymol. pmid:11070888
Yatomi Y et al. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. 2000 Blood pmid:11071638
Fukushima N [A family of lysophospholipid receptors]. 2000 Seikagaku pmid:11076202
Okamoto H et al. Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. 2000 Mol. Cell. Biol. pmid:11094076
Murata N et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. 2000 Biochem. J. pmid:11104690
Xia P et al. An oncogenic role of sphingosine kinase. 2000 Curr. Biol. pmid:11114522
Tamama K et al. Extracellular mechanism through the Edg family of receptors might be responsible for sphingosine-1-phosphate-induced regulation of DNA synthesis and migration of rat aortic smooth-muscle cells. 2001 Biochem. J. pmid:11115407
Sato K et al. Differential roles of Edg-1 and Edg-5, sphingosine 1-phosphate receptors, in the signaling pathways in C6 glioma cells. 2000 Brain Res. Mol. Brain Res. pmid:11146117
Paik JH et al. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. 2001 J. Biol. Chem. pmid:11150298
Pyne S and Pyne N Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. 2000 Pharmacol. Ther. pmid:11150592
Conway A et al. Ceramide-dependent regulation of p42/p44 mitogen-activated protein kinase and c-Jun N-terminal-directed protein kinase in cultured airway smooth muscle cells. 2000 Cell. Signal. pmid:11152959
Young KW and Nahorski SR Intracellular sphingosine 1-phosphate production: a novel pathway for Ca2+ release. 2001 Semin. Cell Dev. Biol. pmid:11162743
English D et al. Platelet-released phospholipids link haemostasis and angiogenesis. 2001 Cardiovasc. Res. pmid:11166272
Radin NS Killing cancer cells by poly-drug elevation of ceramide levels: a hypothesis whose time has come? 2001 Eur. J. Biochem. pmid:11168352
Kim JH et al. Sphingosine 1-phosphate activates Erk-1/-2 by transactivating epidermal growth factor receptor in rat-2 cells. 2000 IUBMB Life pmid:11185956
Hobson JP et al. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. 2001 Science pmid:11230698