Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Fibrosis D005355 23 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Psoriasis D011565 47 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Gennero I et al. Effect of sphingosine-1-phosphate and analogues of lysophosphatidic acid on mesangial cell proliferation. 2000 Ann. N. Y. Acad. Sci. pmid:10818478
Alessenko AV The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation, differentiation and death. 2000 Membr Cell Biol pmid:10779176
Miura Y et al. Rho-mediated phosphorylation of focal adhesion kinase and myosin light chain in human endothelial cells stimulated with sphingosine 1-phosphate, a bioactive lysophospholipid released from activated platelets. 2000 J. Biochem. pmid:10788802
Im DS et al. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. 2000 J. Biol. Chem. pmid:10799507
Goetzl EJ et al. Cutting edge: differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. 2000 J. Immunol. pmid:10799850
Nava VE et al. Functional characterization of human sphingosine kinase-1. 2000 FEBS Lett. pmid:10802064
Spiegel S and Milstien S Functions of a new family of sphingosine-1-phosphate receptors. 2000 Biochim. Biophys. Acta pmid:10760461
Panetti TS et al. Sphingosine-1-phosphate and lysophosphatidic acid stimulate endothelial cell migration. 2000 Arterioscler. Thromb. Vasc. Biol. pmid:10764666
Meacci E et al. Permissive role of protein kinase C alpha but not protein kinase C delta in sphingosine 1-phosphate-induced Rho A activation in C2C12 myoblasts. 2000 FEBS Lett. pmid:11018530
Nugent D and Xu Y Sphingosine-1-phosphate: characterization of its inhibition of platelet aggregation. 2000 Platelets pmid:10938902
Young KW et al. Effect of dimethylsphingosine on muscarinic M(3) receptor signalling in SH-SY5Y cells. 2000 Eur. J. Pharmacol. pmid:10940357
Bischoff A et al. Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. 2000 Br. J. Pharmacol. pmid:10952677
Bischoff A et al. Sphingosine-1-phosphate reduces rat renal and mesenteric blood flow in vivo in a pertussis toxin-sensitive manner. 2000 Br. J. Pharmacol. pmid:10952678
Alemany R et al. Stimulation of sphingosine-1-phosphate formation by the P2Y(2) receptor in HL-60 cells: Ca(2+) requirement and implication in receptor-mediated Ca(2+) mobilization, but not MAP kinase activation. 2000 Mol. Pharmacol. pmid:10953041
Young KW et al. Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. 2000 J. Biol. Chem. pmid:10954727
Peyruchaud O and Mosher DF Differential stimulation of signaling pathways initiated by Edg-2 in response to lysophosphatidic acid or sphingosine-1-phosphate. 2000 Cell. Mol. Life Sci. pmid:10961347
Sugiyama A et al. Sphingosine 1-phosphate induces sinus tachycardia and coronary vasoconstriction in the canine heart. 2000 Cardiovasc. Res. pmid:10727660
Okamoto H et al. Sphingosine 1-phosphate stimulates G(i)- and Rho-mediated vascular endothelial cell spreading and migration. 2000 Thromb. Res. pmid:10942792
Nanjundan M and Possmayer F Characterization of the pulmonary N-ethylmaleimide-insensitive phosphatidate phosphohydrolase. 2000 Jul-Aug Exp. Lung Res. pmid:10914334
Lampasso JD et al. Sphingosine-1-phosphate effects on PKC isoform expression in human osteoblastic cells. 2001 Prostaglandins Leukot. Essent. Fatty Acids pmid:11728164
Hla T et al. Lysophospholipids--receptor revelations. 2001 Science pmid:11729304
Muraki K and Imaizumi Y A novel function of sphingosine-1-phosphate to activate a non-selective cation channel in human endothelial cells. 2001 J. Physiol. (Lond.) pmid:11731576
Lee MJ et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. 2001 Mol. Cell pmid:11583630
Li G et al. Sphingosine-1-phosphate lyase has a central role in the development of Dictyostelium discoideum. 2001 Development pmid:11566853
Bischoff A et al. Nifedipine inhibits sphinogosine-1-phosphate-induced renovascular contraction in vitro and in vivo. 2001 Naunyn Schmiedebergs Arch. Pharmacol. pmid:11534858
Robert P et al. EDG1 receptor stimulation leads to cardiac hypertrophy in rat neonatal myocytes. 2001 J. Mol. Cell. Cardiol. pmid:11549339
Marletta MA Another activation switch for endothelial nitric oxide synthase: why does it have to be so complicated? 2001 Trends Biochem. Sci. pmid:11551775
Ohmori T et al. G(i)-mediated Cas tyrosine phosphorylation in vascular endothelial cells stimulated with sphingosine 1-phosphate: possible involvement in cell motility enhancement in cooperation with Rho-mediated pathways. 2001 J. Biol. Chem. pmid:11056155
Erl W and Siess W Sphingosine-1-phosphate and the leading Edg-1 of vascular smooth muscle cells. 2001 Circ. Res. pmid:11557732
Malek RL et al. Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. 2001 J. Biol. Chem. pmid:11069896
Kluk MJ and Hla T Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. 2001 Circ. Res. pmid:11557736
Meacci E et al. Dual regulation of sphingosine 1-phosphate-induced phospholipase D activity through RhoA and protein kinase C-alpha in C2C12 myoblasts. 2001 Cell. Signal. pmid:11483412
Pébay A et al. Sphingosine-1-phosphate induces proliferation of astrocytes: regulation by intracellular signalling cascades. 2001 Eur. J. Neurosci. pmid:11467306
Brownlee C Intracellular signalling: sphingosine-1-phosphate branches out. 2001 Curr. Biol. pmid:11470429
Alderton F et al. G-protein-coupled receptor stimulation of the p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate phosphatases 1, 1a, and 2 in human embryonic kidney 293 cells. 2001 J. Biol. Chem. pmid:11278307
Igarashi J et al. Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. 2001 J. Biol. Chem. pmid:11278407
Morales-Ruiz M et al. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. 2001 J. Biol. Chem. pmid:11278592
Birchwood CJ et al. Calcium influx and signaling in yeast stimulated by intracellular sphingosine 1-phosphate accumulation. 2001 J. Biol. Chem. pmid:11278643
Ng CK et al. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. 2001 Nature pmid:11279499
Kranenburg O and Moolenaar WH Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. 2001 Oncogene pmid:11313900
Schwartz BM et al. Lysophospholipids increase interleukin-8 expression in ovarian cancer cells. 2001 Gynecol. Oncol. pmid:11330965
Hobson JP et al. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. 2001 Science pmid:11230698
Alderton F et al. Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. 2001 J. Biol. Chem. pmid:11359779
Pébay A et al. Antiproliferative properties of sphingosine-1-phosphate in human hepatic myofibroblasts. 2001 Eur. J. Neurosci. pmid:11422447
Kimura T et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. 2001 J. Biol. Chem. pmid:11427538
Ishii I et al. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. 2001 J. Biol. Chem. pmid:11443127
Kralik SF et al. A method for quantitative extraction of sphingosine 1-phosphate into organic solvent. 2001 Anal. Biochem. pmid:11444818
Repp H et al. Activation of a Ca2+-dependent K+ current in mouse fibroblasts by sphingosine-1-phosphate involves the protein tyrosine kinase c-Src. 2001 Naunyn Schmiedebergs Arch. Pharmacol. pmid:11284444
Ruwisch L et al. An improved high-performance liquid chromatographic method for the determination of sphingosine-1-phosphate in complex biological materials. 2001 Naunyn Schmiedebergs Arch. Pharmacol. pmid:11284453
Aas V et al. Fibronectin promotes calcium signaling by interferon-gamma in human neutrophils via G-protein and sphingosine kinase-dependent mechanisms. 2001 Cell Commun. Adhes. pmid:11936187