Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Fibrosis D005355 23 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Psoriasis D011565 47 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Stone ML et al. Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25910934
Farnoud AM et al. The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1-Sphingosine 1-Phosphate Pathway. 2015 Infect. Immun. pmid:25895971
Chimen M et al. Homeostatic regulation of T cell trafficking by a B cell-derived peptide is impaired in autoimmune and chronic inflammatory disease. 2015 Nat. Med. pmid:25894827
Pulli I et al. A novel chimeric aequorin fused with caveolin-1 reveals a sphingosine kinase 1-regulated Ca²⁺ microdomain in the caveolar compartment. 2015 Biochim. Biophys. Acta pmid:25892494
Urtz N et al. Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo. 2015 Circ. Res. pmid:26129975
Zankov DP and Ogita H Actin-tethered junctional complexes in angiogenesis and lymphangiogenesis in association with vascular endothelial growth factor. 2015 Biomed Res Int pmid:25883953
Moolenaar WH Introduction to the ECR special issue on lysophospholipids in biology. 2015 Exp. Cell Res. pmid:25746723
Kang H et al. The Therapeutic Effects of Human Mesenchymal Stem Cells Primed with Sphingosine-1 Phosphate on Pulmonary Artery Hypertension. 2015 Stem Cells Dev. pmid:25761906
Carrera I et al. A comparative evaluation of a novel vaccine in APP/PS1 mouse models of Alzheimer's disease. 2015 Biomed Res Int pmid:25759822
Ueda N Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. 2015 Int J Mol Sci pmid:25751724
Zhao S and Li J Sphingosine-1-phosphate induces the migration of thyroid follicular carcinoma cells through the microRNA-17/PTK6/ERK1/2 pathway. 2015 PLoS ONE pmid:25748447
Lin CC et al. Sphingosine-1-phosphate mediates ICAM-1-dependent monocyte adhesion through p38 MAPK and p42/p44 MAPK-dependent Akt activation. 2015 PLoS ONE pmid:25734900
Zhang DD et al. Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors. 2015 Biol. Chem. pmid:25720064
Schröder M et al. Subcellular distribution of FTY720 and FTY720-phosphate in immune cells - another aspect of Fingolimod action relevant for therapeutic application. 2015 Biol. Chem. pmid:25720062
Koch A et al. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration. 2015 Biol. Chem. pmid:25719311
Roviezzo F et al. S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: molecular and cellular mechanisms. 2015 Br. J. Pharmacol. pmid:25439580
Konstantinou D et al. Growth factors mediated differentiation of mesenchymal stem cells to cardiac polymicrotissue using hanging drop and bioreactor. 2015 Cell Biol. Int. pmid:25492631
Pyne NJ and Kolesnick RN The life and work of Dr. Robert Bittman (1942-2014). 2015 Biol. Chem. pmid:25473803
Hashimoto Y et al. Sphingosine-1-phosphate inhibits differentiation of C3H10T1/2 cells into adipocyte. 2015 Mol. Cell. Biochem. pmid:25445169
Carroll B et al. Sphingolipids in the DNA damage response. 2015 Adv Biol Regul pmid:25434743
Benesch MG et al. Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. 2015 J. Lipid Res. pmid:25896349
Wysoczynski M et al. Identification of heme oxygenase 1 (HO-1) as a novel negative regulator of mobilization of hematopoietic stem/progenitor cells. 2015 Stem Cell Rev pmid:25086571
Czubowicz K et al. Sphingosine-1-phosphate and its effect on glucose deprivation/glucose reload stress: from gene expression to neuronal survival. 2015 Mol. Neurobiol. pmid:25056275
Siow D et al. Regulation of de novo sphingolipid biosynthesis by the ORMDL proteins and sphingosine kinase-1. 2015 Adv Biol Regul pmid:25319495
Sano N et al. New drug delivery system for liver sinusoidal endothelial cells for ischemia-reperfusion injury. 2015 World J. Gastroenterol. pmid:26668502
Winkler MS et al. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. 2015 Crit Care pmid:26498205
Matula K et al. Regulation of cellular sphingosine-1-phosphate by sphingosine kinase 1 and sphingosine-1-phopshate lyase determines chemotherapy resistance in gastroesophageal cancer. 2015 BMC Cancer pmid:26493335
Barnawi J et al. Potential Link between the Sphingosine-1-Phosphate (S1P) System and Defective Alveolar Macrophage Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD). 2015 PLoS ONE pmid:26485657
Moruno Manchon JF et al. Cytoplasmic sphingosine-1-phosphate pathway modulates neuronal autophagy. 2015 Sci Rep pmid:26477494
Deng Z et al. Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. 2015 Nat Commun pmid:25907800
Wang K et al. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. 2015 PLoS Genet. pmid:26474409
Jeong JK et al. Modulation of the expression of sphingosine 1-phosphate 2 receptors regulates the differentiation of pre-adipocytes. 2015 Mol Med Rep pmid:26459774
Sutter I et al. Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. 2015 Atherosclerosis pmid:26093887
Kihara Y et al. Lysophospholipid receptors in drug discovery. 2015 Exp. Cell Res. pmid:25499971
Boczkowska-Radziwon B et al. Ozonation of human blood increases sphingosine-1-phosphate in plasma. 2015 J. Physiol. Pharmacol. pmid:25903957
Le Bihan O et al. Visualization of adherent cell monolayers by cryo-electron microscopy: A snapshot of endothelial adherens junctions. 2015 J. Struct. Biol. pmid:26470813
Dai L et al. Ceramides promote apoptosis for virus-infected lymphoma cells through induction of ceramide synthases and viral lytic gene expression. 2015 Oncotarget pmid:26327294
Simón MV et al. Sphingosine-1-Phosphate Is a Crucial Signal for Migration of Retina Müller Glial Cells. 2015 Invest. Ophthalmol. Vis. Sci. pmid:26325420
Yang L et al. Sphingosine 1-Phosphate Receptor 2 and 3 Mediate Bone Marrow-Derived Monocyte/Macrophage Motility in Cholestatic Liver Injury in Mice. 2015 Sci Rep pmid:26324256
Brünnert D et al. Sphingosine 1-phosphate regulates IL-8 expression and secretion via S1PR1 and S1PR2 receptors-mediated signaling in extravillous trophoblast derived HTR-8/SVneo cells. 2015 Placenta pmid:26321412
Zhao YD et al. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung. 2015 PLoS ONE pmid:26317340
Cantalupo A et al. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. 2015 Nat. Med. pmid:26301690
Adamiak M et al. Evidence for the involvement of sphingosine-1-phosphate in the homing and engraftment of hematopoietic stem cells to bone marrow. 2015 Oncotarget pmid:26299919
Nakagawa Y and Chiba K Diversity and plasticity of microglial cells in psychiatric and neurological disorders. 2015 Pharmacol. Ther. pmid:26129625
Jeong SK et al. Sphingosine kinase 1 activation enhances epidermal innate immunity through sphingosine-1-phosphate stimulation of cathelicidin production. 2015 J. Dermatol. Sci. pmid:26113114
Marycz K et al. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine. 2015 Cell. Mol. Biol. Lett. pmid:26110483
Chen MH et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. 2015 Oncotarget pmid:26090720
Panneer Selvam S et al. Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation. 2015 Sci Signal pmid:26082434
El-Najjar N et al. Increased Levels of Sphingosylphosphorylcholine (SPC) in Plasma of Metabolic Syndrome Patients. 2015 PLoS ONE pmid:26466367
Hyder CL et al. Sphingolipids inhibit vimentin-dependent cell migration. 2015 J. Cell. Sci. pmid:25908861