Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Kerage D et al. Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. 2014 Placenta pmid:24411702
Tao C et al. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic β cells and adipocytes. 2014 Best Pract. Res. Clin. Endocrinol. Metab. pmid:24417945
Czubowicz K and Strosznajder R Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. 2014 Mol. Neurobiol. pmid:24420784
Schaper K et al. Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. 2014 Mol. Immunol. pmid:24434636
Hamidi S et al. TLR2/1 and sphingosine 1-phosphate modulate inflammation, myofibroblast differentiation and cell migration in fibroblasts. 2014 Biochim. Biophys. Acta pmid:24440818
Ito S et al. TNF-α production in NKT cell hybridoma is regulated by sphingosine-1-phosphate: implications for inflammation in atherosclerosis. 2014 Coron. Artery Dis. pmid:24448174
Moxon JV et al. Comparison of the serum lipidome in patients with abdominal aortic aneurysm and peripheral artery disease. 2014 Circ Cardiovasc Genet pmid:24448739
Fujii K et al. Sphingosine 1-phosphate increases an intracellular Ca(2+) concentration via S1P3 receptor in cultured vascular smooth muscle cells. 2014 J. Pharm. Pharmacol. pmid:24450400
Nakanaga K et al. Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. 2014 J. Biochem. pmid:24451492
Gassowska M et al. Sphingosine kinases/sphingosine-1-phosphate and death Signalling in APP-transfected cells. 2014 Neurochem. Res. pmid:24452756
Kempf A et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. 2014 PLoS Biol. pmid:24453941
Couttas TA et al. Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer's disease pathogenesis. 2014 Acta Neuropathol Commun pmid:24456642
Blaho VA and Hla T An update on the biology of sphingosine 1-phosphate receptors. 2014 J. Lipid Res. pmid:24459205
Ishizawa S et al. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. 2014 Clin. Exp. Nephrol. pmid:24463961
Plano D et al. Importance of sphingosine kinase (SphK) as a target in developing cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors. 2014 J. Med. Chem. pmid:24471412
Takabe K and Spiegel S Export of sphingosine-1-phosphate and cancer progression. 2014 J. Lipid Res. pmid:24474820
Smyth SS et al. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. 2014 Arterioscler. Thromb. Vasc. Biol. pmid:24482375
Ohotski J et al. Sphingosine kinase 2 prevents the nuclear translocation of sphingosine 1-phosphate receptor-2 and tyrosine 416 phosphorylated c-Src and increases estrogen receptor negative MDA-MB-231 breast cancer cell growth: The role of sphingosine 1-phosphate receptor-4. 2014 Cell. Signal. pmid:24486401
Takeshita E et al. Diacylglycerol kinase γ is a novel anionic phospholipid binding protein with a selective binding preference. 2014 Biochem. Biophys. Res. Commun. pmid:24486543
Kamiya T et al. Role of Ca2+ -dependent and Ca2+ -sensitive mechanisms in sphingosine 1-phosphate-induced constriction of isolated porcine retinal arterioles in vitro. 2014 Exp. Eye Res. pmid:24486793
Mierzejewska K et al. Sphingosine-1-phosphate-mediated mobilization of hematopoietic stem/progenitor cells during intravascular hemolysis requires attenuation of SDF-1-CXCR4 retention signaling in bone marrow. 2013 Biomed Res Int pmid:24490172
Rolin J and Maghazachi AA Implications of chemokines, chemokine receptors, and inflammatory lipids in atherosclerosis. 2014 J. Leukoc. Biol. pmid:24493826
Dai L et al. Sphingosine 1-phosphate: a potential molecular target for ovarian cancer therapy? 2014 Cancer Invest. pmid:24499107
Ito K et al. Integrin α9 on lymphatic endothelial cells regulates lymphocyte egress. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:24516133
Tabasinezhad M et al. Sphingosin 1-phosphate contributes in tumor progression. J Cancer Res Ther pmid:24518696
Adamson RH et al. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24531813
Guan Z et al. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. 2014 J. Am. Soc. Nephrol. pmid:24578134
Oizumi A et al. Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate. 2014 PLoS ONE pmid:24586752
Nakamura H and Murayama T Role of sphingolipids in arachidonic acid metabolism. 2014 J. Pharmacol. Sci. pmid:24599139
Guo S et al. Higher level of plasma bioactive molecule sphingosine 1-phosphate in women is associated with estrogen. 2014 Biochim. Biophys. Acta pmid:24603322
Priceman SJ et al. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. 2014 Cell Rep pmid:24630990
Zhang J and Song J Amphiphilic degradable polymers for immobilization and sustained delivery of sphingosine 1-phosphate. 2014 Acta Biomater pmid:24631657
Waeber C and Walther T Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. 2014 Circ. J. pmid:24632793
Ye C et al. Identification of a novel small-molecule agonist for human G protein-coupled receptor 3. 2014 J. Pharmacol. Exp. Ther. pmid:24633425
Willinger T et al. Dynamin 2-dependent endocytosis is required for sustained S1PR1 signaling. 2014 J. Exp. Med. pmid:24638168
Sykes DA et al. Investigating the molecular mechanisms through which FTY720-P causes persistent S1P1 receptor internalization. 2014 Br. J. Pharmacol. pmid:24641481
Shimizu Y et al. Potentials of the circulating pruritogenic mediator lysophosphatidic acid in development of allergic skin inflammation in mice: role of blood cell-associated lysophospholipase D activity of autotaxin. 2014 Am. J. Pathol. pmid:24641902
Rahman MM et al. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids. 2014 PLoS ONE pmid:24647471
Kono M et al. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. 2014 J. Clin. Invest. pmid:24667638
Ntranos A et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. 2014 J. Neuroimmunol. pmid:24680062
Yu H et al. Sphingosine kinase 1 improves cutaneous wound healing in diabetic rats. 2014 Injury pmid:24685054
Shin KO et al. Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells. 2014 Arch. Pharm. Res. pmid:24687256
Nagamatsu T et al. Emerging roles for lysophospholipid mediators in pregnancy. 2014 Am. J. Reprod. Immunol. pmid:24689547
Gatfield J et al. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling. 2014 Cell. Signal. pmid:24704119
Sasaki H et al. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. 2014 Arch. Biochem. Biophys. pmid:24708996
Korbelik M et al. Ceramide and sphingosine-1-phosphate act as photodynamic therapy-elicited damage-associated molecular patterns: cell surface exposure. 2014 Int. Immunopharmacol. pmid:24713544
Kondo S et al. Memo has a novel role in S1P signaling and is [corrected] crucial for vascular development. 2014 PLoS ONE pmid:24714781
Zhu Y et al. Vitamin D therapy in experimental allergic encephalomyelitis could be limited by opposing effects of sphingosine 1-phosphate and gelsolin dysregulation. 2014 Mol. Neurobiol. pmid:24722820
Rosen H et al. The organization of the sphingosine 1-phosphate signaling system. 2014 Curr. Top. Microbiol. Immunol. pmid:24728591
Hanson MA and Peach R Structural biology of the S1P1 receptor. 2014 Curr. Top. Microbiol. Immunol. pmid:24728592
Cahalan SM Chemical and genetic tools to explore S1P biology. 2014 Curr. Top. Microbiol. Immunol. pmid:24728593
Xiong Y and Hla T S1P control of endothelial integrity. 2014 Curr. Top. Microbiol. Immunol. pmid:24728594
Arnon TI and Cyster JG Blood, sphingosine-1-phosphate and lymphocyte migration dynamics in the spleen. 2014 Curr. Top. Microbiol. Immunol. pmid:24728595
Oldstone MB and Rosen H Cytokine storm plays a direct role in the morbidity and mortality from influenza virus infection and is chemically treatable with a single sphingosine-1-phosphate agonist molecule. 2014 Curr. Top. Microbiol. Immunol. pmid:24728596
Martin R and Sospedra M Sphingosine-1 phosphate and central nervous system. 2014 Curr. Top. Microbiol. Immunol. pmid:24728597
Jesko H et al. Sphingosine kinases modulate the secretion of amyloid β precursor protein from SH-SY5Y neuroblastoma cells: the role of α-synuclein. 2014 Folia Neuropathol pmid:24729344
O'Sullivan MJ et al. Sphingosine 1-phosphate (S1P) induced interleukin-8 (IL-8) release is mediated by S1P receptor 2 and nuclear factor κB in BEAS-2B cells. 2014 PLoS ONE pmid:24743449
Poitevin S et al. Sphingosine kinase 1 expressed by endothelial colony-forming cells has a critical role in their revascularization activity. 2014 Cardiovasc. Res. pmid:24743591
Tong X et al. The compensatory enrichment of sphingosine -1- phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus. 2014 Cardiovasc Diabetol pmid:24751283
de Assuncao TM et al. New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids. 2014 J. Biol. Chem. pmid:24759103
Oskeritzian CA Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. 2015 Mol. Immunol. pmid:24766823
Brizuela L et al. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. 2014 Mol Oncol pmid:24768038
Park K et al. The dietary ingredient, genistein, stimulates cathelicidin antimicrobial peptide expression through a novel S1P-dependent mechanism. 2014 J. Nutr. Biochem. pmid:24768661
Ceglarek U et al. Preanalytical standardization of sphingosine-1-phosphate, sphinganine-1-phosphate and sphingosine analysis in human plasma by liquid chromatography-tandem mass spectrometry. 2014 Clin. Chim. Acta pmid:24768784
Zhang GQ et al. Sphingosine-1-phosphate receptors respond differently to early myocardial ischemia and ischemia-reperfusion in vivo. 2014 Sheng Li Xue Bao pmid:24777407
Karaca I et al. Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. 2014 J. Biol. Chem. pmid:24808180
Kurano M et al. Induction of insulin secretion by apolipoprotein M, a carrier for sphingosine 1-phosphate. 2014 Biochim. Biophys. Acta pmid:24814049
Park SM et al. Sphingosine-1-phosphate lyase is expressed by CD68+ cells on the parenchymal side of marginal reticular cells in human lymph nodes. 2014 Eur. J. Immunol. pmid:24825162
Purschke WG et al. Identification and characterization of a mirror-image oligonucleotide that binds and neutralizes sphingosine 1-phosphate, a central mediator of angiogenesis. 2014 Biochem. J. pmid:24832383
Vanoli E et al. Vagomimetic effects of fingolimod: physiology and clinical implications. 2014 CNS Neurosci Ther pmid:24836740
Zhang Y et al. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. 2014 J. Clin. Invest. pmid:24837436
Ni X et al. Interaction of integrin β4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement. 2014 J. Cell. Biochem. pmid:24851274
Sheridan GK and Dev KK Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations. 2014 Sci Rep pmid:24851861
Yan W et al. Adiponectin regulates SR Ca(2+) cycling following ischemia/reperfusion via sphingosine 1-phosphate-CaMKII signaling in mice. 2014 J. Mol. Cell. Cardiol. pmid:24852843
Hait NC et al. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. 2014 Nat. Neurosci. pmid:24859201
Janes K et al. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. 2014 J. Biol. Chem. pmid:24876379
Chawla S et al. Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects. 2014 PLoS ONE pmid:24887065
Potì F et al. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). 2014 Cardiovasc. Res. pmid:24891400
Arya D et al. Sphingosine-1-phosphate promotes the differentiation of adipose-derived stem cells into endothelial nitric oxide synthase (eNOS) expressing endothelial-like cells. 2014 J. Biomed. Sci. pmid:24898615
Maceyka M and Spiegel S Sphingolipid metabolites in inflammatory disease. 2014 Nature pmid:24899305
Deng H et al. Discovery of Clinical Candidate GSK1842799 As a Selective S1P1 Receptor Agonist (Prodrug) for Multiple Sclerosis. 2013 ACS Med Chem Lett pmid:24900589
Tarbell JM et al. Mechanosensing at the vascular interface. 2014 Annu Rev Biomed Eng pmid:24905872
Pan HY et al. Sphingosine-1-phosphate mediates AKT/ERK maintenance of dental pulp homoeostasis. 2015 Int Endod J pmid:24931601
Ceccom J et al. [Sphingosine 1-phosphate as a biomarker for Alzheimer's disease?]. 2014 Med Sci (Paris) pmid:24939530
Sutter I et al. Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate. 2014 J. Lipid Res. pmid:24950692
Nagata Y et al. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation. 2014 Exp. Cell Res. pmid:24960577
Burow P et al. Activation of ATP secretion via volume-regulated anion channels by sphingosine-1-phosphate in RAW macrophages. 2015 Pflugers Arch. pmid:24965069
Snelder N et al. Translational pharmacokinetic modeling of fingolimod (FTY720) as a paradigm compound subject to sphingosine kinase-mediated phosphorylation. 2014 Drug Metab. Dispos. pmid:24965813
Don AS et al. Re-configuration of sphingolipid metabolism by oncogenic transformation. 2014 Biomolecules pmid:24970218
Uhlig S et al. Differential regulation of lung endothelial permeability in vitro and in situ. 2014 Cell. Physiol. Biochem. pmid:24977477
Arlt O et al. Sphingosine-1-phosphate modulates dendritic cell function: focus on non-migratory effects in vitro and in vivo. 2014 Cell. Physiol. Biochem. pmid:24977479
Halmer R et al. Sphingolipids: important players in multiple sclerosis. 2014 Cell. Physiol. Biochem. pmid:24977485
Fayyaz S et al. Divergent role of sphingosine 1-phosphate on insulin resistance. 2014 Cell. Physiol. Biochem. pmid:24977487
van Echten-Deckert G et al. Sphingosine-1-phosphate: boon and bane for the brain. 2014 Cell. Physiol. Biochem. pmid:24977488
Thuy AV et al. Sphingosine 1-phosphate in blood: function, metabolism, and fate. 2014 Cell. Physiol. Biochem. pmid:24977489
Sattler K et al. HDL-bound sphingosine 1-phosphate (S1P) predicts the severity of coronary artery atherosclerosis. 2014 Cell. Physiol. Biochem. pmid:24977490
Rauch BH Sphingosine 1-phosphate as a link between blood coagulation and inflammation. 2014 Cell. Physiol. Biochem. pmid:24977491
Mahajan-Thakur S et al. Sphingosine-1-phosphate induces thrombin receptor PAR-4 expression to enhance cell migration and COX-2 formation in human monocytes. 2014 J. Leukoc. Biol. pmid:24990321
Meng Y et al. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. 2014 Fertil. Steril. pmid:24993801
Brünnert D et al. Lysophosphatidic acid and sphingosine 1-phosphate metabolic pathways and their receptors are differentially regulated during decidualization of human endometrial stromal cells. 2014 Mol. Hum. Reprod. pmid:24994816