Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Neoplasm Invasiveness D009361 23 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Nerve Degeneration D009410 53 associated lipids
Neuralgia D009437 28 associated lipids
Neuroblastoma D009447 66 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Ovarian Diseases D010049 5 associated lipids
Pain D010146 64 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Wilson PC et al. Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel. 2015 Mol. Endocrinol. pmid:25871850
Jernigan PL et al. The role of sphingolipids in endothelial barrier function. 2015 Biol. Chem. pmid:25867999
Egom EE et al. The effect of the sphingosine-1-phosphate analogue FTY720 on atrioventricular nodal tissue. 2015 J. Cell. Mol. Med. pmid:25864579
Breslin JW et al. Involvement of local lamellipodia in endothelial barrier function. 2015 PLoS ONE pmid:25658915
Kalhori V and Törnquist K MMP2 and MMP9 participate in S1P-induced invasion of follicular ML-1 thyroid cancer cells. 2015 Mol. Cell. Endocrinol. pmid:25643979
Sivasubramanian M et al. Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson's disease and in MPP+ -treated MN9D cells in vitro. 2015 Neuroscience pmid:25637806
Opal SM and van der Poll T Endothelial barrier dysfunction in septic shock. 2015 J. Intern. Med. pmid:25418337
Hernández-Coronado CG et al. Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. 2015 Animal pmid:25245232
Fogarty CE and Bergmann A The Sound of Silence: Signaling by Apoptotic Cells. 2015 Curr. Top. Dev. Biol. pmid:26431570
Oskeritzian CA Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. 2015 Mol. Immunol. pmid:24766823
Binder BY et al. Lysophosphatidic Acid and Sphingosine-1-Phosphate: A Concise Review of Biological Function and Applications for Tissue Engineering. 2015 Tissue Eng Part B Rev pmid:26035484
Hoffmann FS et al. Fingolimod induces neuroprotective factors in human astrocytes. 2015 J Neuroinflammation pmid:26419927
Galvani S et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. 2015 Sci Signal pmid:26268607
Riley RT et al. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. 2015 Mol Nutr Food Res pmid:26264677
Attiori Essis S et al. GluN2B-containing NMDA receptors are upregulated in plasma membranes by the sphingosine-1-phosphate analog FTY720P. 2015 Brain Res. pmid:26260438
Durham JT et al. Pericyte chemomechanics and the angiogenic switch: insights into the pathogenesis of proliferative diabetic retinopathy? 2015 Invest. Ophthalmol. Vis. Sci. pmid:26030100
Rao PV Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. 2014 Mar-Apr J Ocul Pharmacol Ther pmid:24283588
Radi ZA and Vogel MW Gastric parietal cell atrophy and depletion after administration of a sphingosine-1-phosphate 1 inhibitor. 2014 Toxicol Pathol pmid:24178572
Yu Y et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. 2014 Lipids pmid:24158769
Giannouli CC et al. Visualizing S1P-directed cellular egress by intravital imaging. 2014 Biochim. Biophys. Acta pmid:24090699
Zhang Y et al. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. 2014 J. Clin. Invest. pmid:24837436
Kurano M et al. Induction of insulin secretion by apolipoprotein M, a carrier for sphingosine 1-phosphate. 2014 Biochim. Biophys. Acta pmid:24814049
Arya D et al. Sphingosine-1-phosphate promotes the differentiation of adipose-derived stem cells into endothelial nitric oxide synthase (eNOS) expressing endothelial-like cells. 2014 J. Biomed. Sci. pmid:24898615
Maceyka M and Spiegel S Sphingolipid metabolites in inflammatory disease. 2014 Nature pmid:24899305
Nagata Y et al. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation. 2014 Exp. Cell Res. pmid:24960577
Ceccom J et al. [Sphingosine 1-phosphate as a biomarker for Alzheimer's disease?]. 2014 Med Sci (Paris) pmid:24939530
Uhlig S et al. Differential regulation of lung endothelial permeability in vitro and in situ. 2014 Cell. Physiol. Biochem. pmid:24977477
Brünnert D et al. Lysophosphatidic acid and sphingosine 1-phosphate metabolic pathways and their receptors are differentially regulated during decidualization of human endometrial stromal cells. 2014 Mol. Hum. Reprod. pmid:24994816
Nagamatsu T et al. Emerging roles for lysophospholipid mediators in pregnancy. 2014 Am. J. Reprod. Immunol. pmid:24689547
Shimizu Y et al. Potentials of the circulating pruritogenic mediator lysophosphatidic acid in development of allergic skin inflammation in mice: role of blood cell-associated lysophospholipase D activity of autotaxin. 2014 Am. J. Pathol. pmid:24641902
Ohotski J et al. Sphingosine kinase 2 prevents the nuclear translocation of sphingosine 1-phosphate receptor-2 and tyrosine 416 phosphorylated c-Src and increases estrogen receptor negative MDA-MB-231 breast cancer cell growth: The role of sphingosine 1-phosphate receptor-4. 2014 Cell. Signal. pmid:24486401
Takeo T et al. Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. 2014 Cryobiology pmid:24201107
de Assuncao TM et al. New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids. 2014 J. Biol. Chem. pmid:24759103
Tibboel J et al. Sphingolipids in lung growth and repair. 2014 Chest pmid:24394822
Huang K et al. AP-1 regulates sphingosine kinase 1 expression in a positive feedback manner in glomerular mesangial cells exposed to high glucose. 2014 Cell. Signal. pmid:24342046
Gomes L et al. Sphingosine 1-phosphate in acute dengue infection. 2014 PLoS ONE pmid:25409037
Xu M et al. FTY720 inhibits tubulointerstitial inflammation in albumin overload-induced nephropathy of rats via the Sphk1 pathway. 2014 Acta Pharmacol. Sin. pmid:25399649
Watanabe C et al. Antagonism and synergy of single chain sphingolipids sphingosine and sphingosine-1-phosphate toward lipid bilayer properties. Consequences for their role as cell fate regulators. 2014 Langmuir pmid:25386673
Nakajima C et al. The lipoprotein receptor LRP1 modulates sphingosine-1-phosphate signaling and is essential for vascular development. 2014 Development pmid:25377550
Barnes J and Dweik RA Is pulmonary hypertension a metabolic disease? 2014 Am. J. Respir. Crit. Care Med. pmid:25360726
Chen J et al. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. 2014 PLoS Genet. pmid:25356849
Degagné E et al. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. 2014 J. Clin. Invest. pmid:25347472
Bigaud M et al. Second generation S1P pathway modulators: research strategies and clinical developments. 2014 Biochim. Biophys. Acta pmid:24239768
Huang YL et al. Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. 2014 Cell. Signal. pmid:24333325
Emery SM et al. Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. 2014 J. Pharmacol. Exp. Ther. pmid:24259678
Sutter I et al. Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate. 2014 J. Lipid Res. pmid:24950692
Adamson RH et al. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24531813
Rosen H et al. The organization of the sphingosine 1-phosphate signaling system. 2014 Curr. Top. Microbiol. Immunol. pmid:24728591
Hanson MA and Peach R Structural biology of the S1P1 receptor. 2014 Curr. Top. Microbiol. Immunol. pmid:24728592
Cahalan SM Chemical and genetic tools to explore S1P biology. 2014 Curr. Top. Microbiol. Immunol. pmid:24728593
Goñi FM et al. Biophysical properties of sphingosine, ceramides and other simple sphingolipids. 2014 Biochem. Soc. Trans. pmid:25233422
Arnon TI and Cyster JG Blood, sphingosine-1-phosphate and lymphocyte migration dynamics in the spleen. 2014 Curr. Top. Microbiol. Immunol. pmid:24728595
Yagoub D et al. Sphingosine kinase 1 isoform-specific interactions in breast cancer. 2014 Mol. Endocrinol. pmid:25216046
Oldstone MB and Rosen H Cytokine storm plays a direct role in the morbidity and mortality from influenza virus infection and is chemically treatable with a single sphingosine-1-phosphate agonist molecule. 2014 Curr. Top. Microbiol. Immunol. pmid:24728596
Yang W et al. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation. 2014 PLoS ONE pmid:25188412
Martin R and Sospedra M Sphingosine-1 phosphate and central nervous system. 2014 Curr. Top. Microbiol. Immunol. pmid:24728597
Chen J et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. 2014 Am. J. Respir. Crit. Care Med. pmid:25180446
Kong Y et al. Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells. 2014 Mediators Inflamm. pmid:25147438
Nagahashi M et al. Sphingosine-1-phosphate transporters as targets for cancer therapy. 2014 Biomed Res Int pmid:25133174
Nguyen AV et al. STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer. 2014 World J. Gastroenterol. pmid:25132744
Kim EY et al. Role of sphingosine kinase 1 and sphingosine-1-phosphate in CD40 signaling and IgE class switching. 2014 FASEB J. pmid:25002116
Hao J et al. The interaction between C5a and sphingosine-1-phosphate in neutrophils for antineutrophil cytoplasmic antibody mediated activation. 2014 Arthritis Res. Ther. pmid:25000985
Xiong Y and Hla T S1P control of endothelial integrity. 2014 Curr. Top. Microbiol. Immunol. pmid:24728594
Mendelson K et al. Sphingosine 1-phosphate signalling. 2014 Development pmid:24346695
Rauch BH Sphingosine 1-phosphate as a link between blood coagulation and inflammation. 2014 Cell. Physiol. Biochem. pmid:24977491
Sattler K et al. HDL-bound sphingosine 1-phosphate (S1P) predicts the severity of coronary artery atherosclerosis. 2014 Cell. Physiol. Biochem. pmid:24977490
Thuy AV et al. Sphingosine 1-phosphate in blood: function, metabolism, and fate. 2014 Cell. Physiol. Biochem. pmid:24977489
Hait NC et al. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. 2014 Nat. Neurosci. pmid:24859201
van Echten-Deckert G et al. Sphingosine-1-phosphate: boon and bane for the brain. 2014 Cell. Physiol. Biochem. pmid:24977488
Fayyaz S et al. Divergent role of sphingosine 1-phosphate on insulin resistance. 2014 Cell. Physiol. Biochem. pmid:24977487
Rahman MM et al. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids. 2014 PLoS ONE pmid:24647471
Halmer R et al. Sphingolipids: important players in multiple sclerosis. 2014 Cell. Physiol. Biochem. pmid:24977485
Park SM et al. Sphingosine-1-phosphate lyase is expressed by CD68+ cells on the parenchymal side of marginal reticular cells in human lymph nodes. 2014 Eur. J. Immunol. pmid:24825162
Arlt O et al. Sphingosine-1-phosphate modulates dendritic cell function: focus on non-migratory effects in vitro and in vivo. 2014 Cell. Physiol. Biochem. pmid:24977479
Simmons S and Ishii M Sphingosine-1-phosphate: a master regulator of lymphocyte egress and immunity. 2014 Arch. Immunol. Ther. Exp. (Warsz.) pmid:24276789
Mahajan-Thakur S et al. Sphingosine-1-phosphate induces thrombin receptor PAR-4 expression to enhance cell migration and COX-2 formation in human monocytes. 2014 J. Leukoc. Biol. pmid:24990321
Jesko H et al. Sphingosine kinases modulate the secretion of amyloid β precursor protein from SH-SY5Y neuroblastoma cells: the role of α-synuclein. 2014 Folia Neuropathol pmid:24729344
Zhu Y et al. Vitamin D therapy in experimental allergic encephalomyelitis could be limited by opposing effects of sphingosine 1-phosphate and gelsolin dysregulation. 2014 Mol. Neurobiol. pmid:24722820
Kondo S et al. Memo has a novel role in S1P signaling and is [corrected] crucial for vascular development. 2014 PLoS ONE pmid:24714781
Korbelik M et al. Ceramide and sphingosine-1-phosphate act as photodynamic therapy-elicited damage-associated molecular patterns: cell surface exposure. 2014 Int. Immunopharmacol. pmid:24713544
Gatfield J et al. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling. 2014 Cell. Signal. pmid:24704119
Shin KO et al. Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells. 2014 Arch. Pharm. Res. pmid:24687256
Yu H et al. Sphingosine kinase 1 improves cutaneous wound healing in diabetic rats. 2014 Injury pmid:24685054
Sykes DA et al. Investigating the molecular mechanisms through which FTY720-P causes persistent S1P1 receptor internalization. 2014 Br. J. Pharmacol. pmid:24641481
Zhang J and Song J Amphiphilic degradable polymers for immobilization and sustained delivery of sphingosine 1-phosphate. 2014 Acta Biomater pmid:24631657
Priceman SJ et al. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. 2014 Cell Rep pmid:24630990
Oizumi A et al. Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate. 2014 PLoS ONE pmid:24586752
Blaho VA and Hla T An update on the biology of sphingosine 1-phosphate receptors. 2014 J. Lipid Res. pmid:24459205
Whisler JA et al. Control of perfusable microvascular network morphology using a multiculture microfluidic system. 2014 Tissue Eng Part C Methods pmid:24151838
Mendes-Braz M et al. The effects of glucose and lipids in steatotic and non-steatotic livers in conditions of partial hepatectomy under ischaemia-reperfusion. 2014 Liver Int. pmid:24107124
Baranowski M et al. Ultramarathon run markedly reduces plasma sphingosine-1-phosphate concentration. 2014 Int J Sport Nutr Exerc Metab pmid:24092763
Egom EE Sphingosine-1-phosphate signalling as a therapeutic target for patients with abnormal glucose metabolism and ischaemic heart disease. 2014 J Cardiovasc Med (Hagerstown) pmid:23839592
Fincher J et al. G-protein-coupled receptor cell signaling pathways mediating embryonic chick retinal growth cone collapse induced by lysophosphatidic acid and sphingosine-1-phosphate. 2014 Dev. Neurosci. pmid:25138637
Cencetti F et al. Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis. 2014 FEBS J. pmid:25131845
Neuber C et al. Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry. 2014 Anal. Chem. pmid:25137547
Zeng Y et al. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24285115
Speak AO et al. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. 2014 Blood pmid:24235134
Nagahashi M et al. Sphingosine-1-phosphate in chronic intestinal inflammation and cancer. 2014 Adv Biol Regul pmid:24210073
Ratajczak MZ et al. The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. 2014 Expert Opin. Ther. Targets pmid:24188167
Chawla S et al. Exogenous sphingosine 1-phosphate protects murine splenocytes against hypoxia-induced injury. 2014 Lipids pmid:24190514