Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Peripheral Arterial Disease D058729 7 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Fu P et al. Role of Sphingosine Kinase 1 and S1P Transporter Spns2 in HGF-mediated Lamellipodia Formation in Lung Endothelium. 2016 J. Biol. Chem. pmid:27864331
Wang X et al. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. 2016 PLoS Pathog. pmid:27711202
Adamiak M et al. The Involvment of Hematopoietic-Specific PLC -β2 in Homing and Engraftment of Hematopoietic Stem/Progenitor Cells. 2016 Stem Cell Rev pmid:27704316
Morillon YM et al. Antibody Binding to CD4 Induces Rac GTPase Activation and Alters T Cell Migration. 2016 J. Immunol. pmid:27694496
Adamiak M et al. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation. 2016 Cell Transplant pmid:27412411
Liu X et al. ApoA-I induces S1P release from endothelial cells through ABCA1 and SR-BI in a positive feedback manner. 2016 J. Physiol. Biochem. pmid:27377933
Egom EE et al. Effect of sphingosine-1-phosphate on L-type calcium current and Ca(2+) transient in rat ventricular myocytes. 2016 Mol. Cell. Biochem. pmid:27372350
Sanagawa A et al. Sphingosine 1‑phosphate induced by hypoxia increases the expression of PAI‑1 in HepG2 cells via HIF‑1α. 2016 Mol Med Rep pmid:27357063
Tiper IV et al. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. 2016 Pathog Dis pmid:27354294
Jung M et al. Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. 2016 Sci Signal pmid:27353364
Tong S et al. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane. 2016 J. Biol. Chem. pmid:27405756
Castaldi A et al. Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs. 2016 Cell. Signal. pmid:27094722
Anbazhagan AN et al. Transcriptional modulation of SLC26A3 (DRA) by sphingosine-1-phosphate. 2016 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:27079615
Koresawa R et al. Sphingosine-1-phosphate receptor 1 as a prognostic biomarker and therapeutic target for patients with primary testicular diffuse large B-cell lymphoma. 2016 Br. J. Haematol. pmid:27061580
Resop RS et al. Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery. 2016 J. Allergy Clin. Immunol. pmid:27056271
Guo J et al. Identification and synthesis of potent and selective pyridyl-isoxazole based agonists of sphingosine-1-phosphate 1 (S1P1). 2016 Bioorg. Med. Chem. Lett. pmid:27055941
Adams DR et al. Sphingosine Kinases: Emerging Structure-Function Insights. 2016 Trends Biochem. Sci. pmid:27021309
Lv M et al. Sphingosine kinase 1/sphingosine-1-phosphate regulates the expression of interleukin-17A in activated microglia in cerebral ischemia/reperfusion. 2016 Inflamm. Res. pmid:27002656
Wang H et al. Potential serum biomarkers from a metabolomics study of autism. 2016 J Psychiatry Neurosci pmid:26395811
Zhang H et al. Binding Characteristics of Sphingosine-1-Phosphate to ApoM hints to Assisted Release Mechanism via the ApoM Calyx-Opening. 2016 Sci Rep pmid:27476912
Messias CV et al. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. 2016 PLoS ONE pmid:26824863
Pászti-Gere E et al. Reinforced Epithelial Barrier Integrity via Matriptase Induction with Sphingosine-1-Phosphate Did Not Result in Disturbances in Physiological Redox Status. 2016 Oxid Med Cell Longev pmid:26823955
Wiltshire R et al. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. 2016 Sci Rep pmid:26813587
Farez MF and Correale J Sphingosine 1-phosphate signaling in astrocytes: Implications for progressive multiple sclerosis. 2016 J. Neurol. Sci. pmid:26810518
Santos-Cortez RL et al. Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2. 2016 Am. J. Hum. Genet. pmid:26805784
Bock S et al. Sphingosine 1-phospate differentially modulates maturation and function of human Langerhans-like cells. 2016 J. Dermatol. Sci. pmid:26803226
Marycz K et al. The influence of metal-based biomaterials functionalized with sphingosine-1-phosphate on the cellular response and osteogenic differentaion potenial of human adipose derived mesenchymal stem cells in vitro. 2016 J Biomater Appl pmid:26801473
Pyne NJ and Tigyi GJ A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. 2016 Prog. Lipid Res. pmid:26584871
Rana A and Sharma S Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: Possible involvement of glycogen synthase kinase 3β and mitochondrial permeability transition pore. 2016 Clin. Exp. Pharmacol. Physiol. pmid:26582369
Yuasa D et al. C1q/TNF-related protein-1 functions to protect against acute ischemic injury in the heart. 2016 FASEB J. pmid:26578687
Li N and Zhang F Implication of sphingosin-1-phosphate in cardiovascular regulation. 2016 Front Biosci (Landmark Ed) pmid:27100508
Ratajczak MZ and Suszynska M Emerging Strategies to Enhance Homing and Engraftment of Hematopoietic Stem Cells. 2016 Stem Cell Rev pmid:26400757
Zhang L et al. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels. 2016 Microcirculation pmid:27015105
Yaghobian D et al. Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy. 2016 Clin. Exp. Pharmacol. Physiol. pmid:26414003
Bae SJ et al. The circulating sphingosine-1-phosphate level predicts incident fracture in postmenopausal women: a 3.5-year follow-up observation study. 2016 Osteoporos Int pmid:26984570
Kalhori V et al. FTY720 (Fingolimod) attenuates basal and sphingosine-1-phosphate-evoked thyroid cancer cell invasion. 2016 Endocr. Relat. Cancer pmid:26935838
Setoguchi R IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. 2016 Int. Immunol. pmid:26857736
Nojima H et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. 2016 J. Hepatol. pmid:26254847
Kim BJ et al. The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient. 2016 J. Endocrinol. Invest. pmid:26219613
Touat-Hamici Z et al. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function. 2016 Cardiovasc. Res. pmid:27694435
Medina CB and Ravichandran KS Do not let death do us part: 'find-me' signals in communication between dying cells and the phagocytes. 2016 Cell Death Differ. pmid:26891690
Hsia K et al. Sphingosine-1-phosphate improves endothelialization with reduction of thrombosis in recellularized human umbilical vein graft by inhibiting syndecan-1 shedding in vitro. 2017 Acta Biomater pmid:28110073
Maiti A et al. Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival. 2017 Cell. Signal. pmid:28108260
Meissner A et al. Sphingosine-1-phosphate signalling-a key player in the pathogenesis of Angiotensin II-induced hypertension. 2017 Cardiovasc. Res. pmid:28082452
Atkinson D et al. Sphingosine 1-phosphate lyase deficiency causes Charcot-Marie-Tooth neuropathy. 2017 Neurology pmid:28077491
Ng ML et al. The role of sphingolipid signalling in diabetes‑associated pathologies (Review). 2017 Int. J. Mol. Med. pmid:28075451
van der Weyden L et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. 2017 Nature pmid:28052056
Lima S et al. Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking. 2017 J. Biol. Chem. pmid:28049734
Frias MA et al. High-density lipoprotein-associated sphingosine-1-phosphate activity in heterozygous familial hypercholesterolaemia. 2017 Eur. J. Clin. Invest. pmid:27861771
Fang V et al. Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-γ response. 2017 Nat. Immunol. pmid:27841869
Wang R et al. Hepatic Stellate Cell Selective Disruption of Dynamin-2 GTPase Increases Murine Fibrogenesis through Up-Regulation of Sphingosine-1 Phosphate-Induced Cell Migration. 2017 Am. J. Pathol. pmid:27840081
O'Sullivan S and Dev KK Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases. 2017 Neuropharmacology pmid:27825807
Engel N et al. Synergistic Action of Genistein and Calcitriol in Immature Osteosarcoma MG-63 Cells by SGPL1 Up-Regulation. 2017 PLoS ONE pmid:28125641
Yanagida K and Hla T Vascular and Immunobiology of the Circulatory Sphingosine 1-Phosphate Gradient. 2017 Annu. Rev. Physiol. pmid:27813829
Zhao Z et al. Characterization of the Anticoagulant and Antithrombotic Properties of the Sphingosine 1-Phosphate Mimetic FTY720. 2017 Acta Haematol. pmid:27802432
González-Fernández B et al. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells. 2017 Biofactors pmid:27801960
Katsuta E et al. Doxorubicin effect is enhanced by sphingosine-1-phosphate signaling antagonist in breast cancer. 2017 J. Surg. Res. pmid:29078883
Smith P et al. Sphingosine 1-Phosphate Signaling and Its Pharmacological Modulation in Allogeneic Hematopoietic Stem Cell Transplantation. 2017 Int J Mol Sci pmid:28934113
Anjum I et al. Enhancement of S1P-induced contractile response in detrusor smooth muscle of rats having cystitis. 2017 Eur. J. Pharmacol. pmid:28882559
Pierucci F et al. Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: its role in Cx43-formed gap junction impairment. 2017 Arch. Toxicol. pmid:27318803
Haddadi N et al. "Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. 2017 Int J Mol Sci pmid:28869494
Bosteen MH et al. Effects of apolipoprotein M in uremic atherosclerosis. 2017 Atherosclerosis pmid:28866363
Olesch C et al. Beyond Immune Cell Migration: The Emerging Role of the Sphingosine-1-phosphate Receptor S1PR4 as a Modulator of Innate Immune Cell Activation. 2017 Mediators Inflamm. pmid:28848247
Egom EE et al. Determination of Sphingosine-1-Phosphate in Human Plasma Using Liquid Chromatography Coupled with Q-Tof Mass Spectrometry. 2017 Int J Mol Sci pmid:28820460
Swendeman SL et al. An engineered S1P chaperone attenuates hypertension and ischemic injury. 2017 Sci Signal pmid:28811382
Syed SN et al. S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1 or Lipocalin-2. 2017 Mediators Inflamm. pmid:28804221
Doan NB et al. Acid ceramidase confers radioresistance to glioblastoma cells. 2017 Oncol. Rep. pmid:28765947
Oh YT et al. DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. 2017 Cell Commun. Signal pmid:28482915
Fan Q et al. Sphingosine-1-phosphate promotes ovarian cancer cell proliferation by disrupting Hippo signaling. 2017 Oncotarget pmid:28460443
Lafargue A et al. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. 2017 Free Radic. Biol. Med. pmid:28431961
Di Pietro M et al. In vivo intrabursal administration of bioactive lipid sphingosine-1-phosphate enhances vascular integrity in a rat model of ovarian hyperstimulation syndrome. 2017 Mol. Hum. Reprod. pmid:28379469
Seo Y et al. Sphingosine-1-phosphate is involved in inflammatory reactions in patients with Graves' orbitopathy. 2017 Inflamm. Res. pmid:28364200
Patmanathan SN et al. Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. 2017 Cell. Signal. pmid:28302566
Li S et al. Sphingosine-1-phosphate activates the AKT pathway to inhibit chemotherapy induced human granulosa cell apoptosis. 2017 Gynecol. Endocrinol. pmid:28277139
Garnero P The Utility of Biomarkers in Osteoporosis Management. 2017 Mol Diagn Ther pmid:28271451
Zeng Y Endothelial glycocalyx as a critical signalling platform integrating the extracellular haemodynamic forces and chemical signalling. 2017 J. Cell. Mol. Med. pmid:28211170
Sun XJ et al. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis. 2017 Nephrol. Dial. Transplant. pmid:28206609
Janecke AR et al. Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. 2017 Hum. Mutat. pmid:28181337
Moritz E et al. Reference intervals for serum sphingosine-1-phosphate in the population-based Study of Health in Pomerania. 2017 Clin. Chim. Acta pmid:28159438
Winkler MS et al. Sphingosine-1-Phosphate: A Potential Biomarker and Therapeutic Target for Endothelial Dysfunction and Sepsis? 2017 Shock pmid:27922551
Al-Jarallah A and Oriowo M The effect of sphingosine-1-phosphate on colonic smooth muscle contractility: Modulation by TNBS-induced colitis. 2017 PLoS ONE pmid:28493876
Wang M et al. Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices. 2017 PLoS ONE pmid:29136008
Tran HB et al. Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD. 2017 PLoS ONE pmid:29112690
Mensah SA et al. Regeneration of glycocalyx by heparan sulfate and sphingosine 1-phosphate restores inter-endothelial communication. 2017 PLoS ONE pmid:29023478
Wang X et al. Sphingosine 1-phosphate alleviates Coxsackievirus B3-induced myocarditis by increasing invariant natural killer T cells. 2017 Exp. Mol. Pathol. pmid:28986246
Ko J et al. Sphingosine-1-Phosphate Mediates Fibrosis in Orbital Fibroblasts in Graves' Orbitopathy. 2017 Invest. Ophthalmol. Vis. Sci. pmid:28492873
Aoyama-Araki Y et al. Sphingosine-1-Phosphate (S1P)-Related Response of Human Conjunctival Fibroblasts After Filtration Surgery for Glaucoma. 2017 Invest. Ophthalmol. Vis. Sci. pmid:28418499
Frej C et al. A Shift in ApoM/S1P Between HDL-Particles in Women With Type 1 Diabetes Mellitus Is Associated With Impaired Anti-Inflammatory Effects of the ApoM/S1P Complex. 2017 Arterioscler. Thromb. Vasc. Biol. pmid:28385702
Nakajima M et al. The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. 2017 Tumour Biol. pmid:28381169
Garbowska M et al. Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes. 2017 J. Cell. Physiol. pmid:28369933
Turner VM and Mabbott NA Ageing adversely affects the migration and function of marginal zone B cells. 2017 Immunology pmid:28369800
Müller J et al. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration. 2017 Biomed Res Int pmid:28367448
King A et al. Sphingosine-1-Phosphate Prevents Egress of Hematopoietic Stem Cells From Liver to Reduce Fibrosis. 2017 Gastroenterology pmid:28363640
Wollny T et al. Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease. 2017 Int J Mol Sci pmid:28362332
Denimal D et al. Impairment of the Ability of HDL From Patients With Metabolic Syndrome but Without Diabetes Mellitus to Activate eNOS: Correction by S1P Enrichment. 2017 Arterioscler. Thromb. Vasc. Biol. pmid:28360087
Gusman DH and Shoemake C Evaluation and Optimization of designed Sphingosine-1-Phosphate (S1P) Receptor Subtype 1 Modulators for the Management of Multiple Sclerosis. 2017 Yale J Biol Med pmid:28356890
Green CL et al. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. 2017 Aging Cell pmid:28139067
Vishwakarma S et al. Altered Expression of Sphingosine-1-Phosphate Metabolizing Enzymes in Oral Cancer Correlate With Clinicopathological Attributes. 2017 Cancer Invest. pmid:28135860
Kurano M et al. Involvement of CETP (Cholesteryl Ester Transfer Protein) in the Shift of Sphingosine-1-Phosphate Among Lipoproteins and in the Modulation of its Functions. 2017 Arterioscler. Thromb. Vasc. Biol. pmid:28126827
Wang Y et al. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. 2017 Hepatology pmid:28120434