Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Heart Failure D006333 36 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenoma D000236 40 associated lipids
Arthritis D001168 41 associated lipids
Hyperalgesia D006930 42 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Psoriasis D011565 47 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Hardin C et al. Glassy dynamics, cell mechanics, and endothelial permeability. 2013 J Phys Chem B pmid:23638866
Wang H et al. Potential serum biomarkers from a metabolomics study of autism. 2016 J Psychiatry Neurosci pmid:26395811
Surya VN et al. Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. 2016 J R Soc Interface pmid:27974574
Jiang H et al. Application of ultra-performance liquid chromatography coupled with mass spectrometry to metabonomic study on spontaneously hypertensive rats and intervention effects of Ping Gan prescription. 2012 J Sep Sci pmid:22282408
Cho MC et al. Involvement of sphingosine-1-phosphate/RhoA/Rho-kinase signaling pathway in corporal fibrosis following cavernous nerve injury in male rats. 2011 J Sex Med pmid:21143420
Lee C et al. Attenuation of shock-induced acute lung injury by sphingosine kinase inhibition. 2004 J Trauma pmid:15580017
Zhang BL et al. Sphingosine 1-phosphate acts as an activator for the porcine Gpr3 of constitutively active G protein-coupled receptors. 2012 J Zhejiang Univ Sci B pmid:22761247
Price MM et al. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. 2013 J. Allergy Clin. Immunol. pmid:22939756
Oskeritzian CA et al. The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. 2015 J. Allergy Clin. Immunol. pmid:25512083
Resop RS et al. Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery. 2016 J. Allergy Clin. Immunol. pmid:27056271
Haberberger RV et al. Role of sphingosine kinase 1 in allergen-induced pulmonary vascular remodeling and hyperresponsiveness. 2009 J. Allergy Clin. Immunol. pmid:19665772
Dany M and Elston D Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa. 2017 J. Am. Acad. Dermatol. pmid:28551069
Sattler K et al. Defects of High-Density Lipoproteins in Coronary Artery Disease Caused by Low Sphingosine-1-Phosphate Content: Correction by Sphingosine-1-Phosphate-Loading. 2015 J. Am. Coll. Cardiol. pmid:26403344
Cannavo A et al. β-Blockade Prevents Post-Ischemic Myocardial Decompensation Via βAR-Dependent Protective Sphingosine-1 Phosphate Signaling. 2017 J. Am. Coll. Cardiol. pmid:28683966
Cui J et al. Role of ceramide in ischemic preconditioning. 2004 J. Am. Coll. Surg. pmid:15110811
Park SW et al. Inhibition of sphingosine 1-phosphate receptor 2 protects against renal ischemia-reperfusion injury. 2012 J. Am. Soc. Nephrol. pmid:22095950
Guan Z et al. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. 2014 J. Am. Soc. Nephrol. pmid:24578134
Shikata Y et al. S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. 2003 J. Appl. Physiol. pmid:12482769
Takahashi C et al. Vehicle-dependent Effects of Sphingosine 1-phosphate on Plasminogen Activator Inhibitor-1 Expression. 2017 J. Atheroscler. Thromb. pmid:28321011
Ozaki H et al. Sphingosine-1-phosphate signaling in endothelial activation. 2003 J. Atheroscler. Thromb. pmid:14564080
Satoh Y et al. Regulation by sphingolipids of the fate of FRTL-5 cells. 2009 J. Biochem. pmid:18953023
Hisano Y et al. The functional roles of S1P in immunity. 2012 J. Biochem. pmid:22923732
Kohno T and Igarashi Y Truncation of the N-terminal ectodomain has implications in the N-glycosylation and transport to the cell surface of Edg-1/S1P1 receptor. 2003 J. Biochem. pmid:14688232
Huang YL et al. Tyrosine sulphation of sphingosine 1-phosphate 1 (S1P1) is required for S1P-mediated cell migration in primary cultures of human umbilical vein endothelial cells. 2009 J. Biochem. pmid:19692429
Einicker-Lamas M et al. Sphingosine-1-phosphate formation activates phosphatidylinositol-4 kinase in basolateral membranes from kidney cells: crosstalk in cell signaling through sphingolipids and phospholipids. 2003 J. Biochem. pmid:14607979
Nakanaga K et al. Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. 2014 J. Biochem. pmid:24451492
Kojima K and Inouye K Activation of matriptase zymogen. 2011 J. Biochem. pmid:21737400
Miura Y et al. Rho-mediated phosphorylation of focal adhesion kinase and myosin light chain in human endothelial cells stimulated with sphingosine 1-phosphate, a bioactive lysophospholipid released from activated platelets. 2000 J. Biochem. pmid:10788802
Yatomi Y et al. Sphingosine 1-phosphate breakdown in platelets. 2004 J. Biochem. pmid:15625319
Hashizume T et al. Sphingosine enhances phosphatidylinositol 4-kinase activity in rabbit platelets. 1996 J. Biochem. pmid:8864845
Takuwa Y et al. The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. 2002 J. Biochem. pmid:12038970
Yang L et al. Sphingosine 1-phosphate formation and intracellular Ca2+ mobilization in human platelets: evaluation with sphingosine kinase inhibitors. 1999 J. Biochem. pmid:10393324
Osada M et al. Involvement of sphingosine 1-phosphate, a platelet-derived bioactive lipid, in contraction of mesangium cells. 2007 J. Biochem. pmid:17646176
Yatomi Y et al. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. 1997 J. Biochem. pmid:9192741
Yokoo E et al. Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via S1P2: cross-talk between platelets and mast cells. 2004 J. Biochem. pmid:15213242
Igarashi Y Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways. 1997 J. Biochem. pmid:9498549
Hisano N et al. Quantification of sphingosine derivatives in human platelets: inducible formation of free sphingosine. 1998 J. Biochem. pmid:9538201
Taha TA et al. Sphingosine kinase: biochemical and cellular regulation and role in disease. 2006 J. Biochem. Mol. Biol. pmid:16584625
Vessey DA et al. Sphingosine can pre- and post-condition heart and utilizes a different mechanism from sphingosine 1-phosphate. 2008 Mar-Apr J. Biochem. Mol. Toxicol. pmid:18418901
Itagaki K and Hauser CJ Sphingosine 1-phosphate, a diffusible calcium influx factor mediating store-operated calcium entry. 2003 J. Biol. Chem. pmid:12746430
Wu J et al. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. 1995 J. Biol. Chem. pmid:7744787
Su Y et al. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. 1994 J. Biol. Chem. pmid:8206962
Cummings RJ et al. Phospholipase D activation by sphingosine 1-phosphate regulates interleukin-8 secretion in human bronchial epithelial cells. 2002 J. Biol. Chem. pmid:12039947
Bektas M et al. Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. 2010 J. Biol. Chem. pmid:20097939
Mattie M et al. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. 1994 J. Biol. Chem. pmid:8106352
Takabe K et al. Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. 2010 J. Biol. Chem. pmid:20110355
van Koppen C et al. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. 1996 J. Biol. Chem. pmid:8567663
Johnson KR et al. Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. 2003 J. Biol. Chem. pmid:12815058
Sanna MG et al. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. 2004 J. Biol. Chem. pmid:14732717
Sutherland CM et al. The calmodulin-binding site of sphingosine kinase and its role in agonist-dependent translocation of sphingosine kinase 1 to the plasma membrane. 2006 J. Biol. Chem. pmid:16522638
Windh RT et al. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. 1999 J. Biol. Chem. pmid:10488065
Banno Y et al. Differential phospholipase D activation by bradykinin and sphingosine 1-phosphate in NIH 3T3 fibroblasts overexpressing gelsolin. 1999 J. Biol. Chem. pmid:10488069
Karaca I et al. Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. 2014 J. Biol. Chem. pmid:24808180
Canals D et al. Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane. 2010 J. Biol. Chem. pmid:20679347
An S et al. Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. 2000 J. Biol. Chem. pmid:10617617
Paik JH et al. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. 2001 J. Biol. Chem. pmid:11150298
Berdyshev EV et al. FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. 2009 J. Biol. Chem. pmid:19119142
Siehler S et al. Sphingosine 1-phosphate activates nuclear factor-kappa B through Edg receptors. Activation through Edg-3 and Edg-5, but not Edg-1, in human embryonic kidney 293 cells. 2001 J. Biol. Chem. pmid:11673450
Hollands A et al. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity. 2016 J. Biol. Chem. pmid:27226531
Liu M et al. Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. 2014 J. Biol. Chem. pmid:24318881
Ohmori T et al. G(i)-mediated Cas tyrosine phosphorylation in vascular endothelial cells stimulated with sphingosine 1-phosphate: possible involvement in cell motility enhancement in cooperation with Rho-mediated pathways. 2001 J. Biol. Chem. pmid:11056155
Malek RL et al. Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. 2001 J. Biol. Chem. pmid:11069896
Igarashi J and Michel T Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase beta. Evidence for divergence and convergence of receptor-regulated endothelial nitric-oxide synthase signaling pathways. 2001 J. Biol. Chem. pmid:11470796
Olivera A et al. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. 2006 J. Biol. Chem. pmid:16316995
Gennero I et al. Apoptotic effect of sphingosine 1-phosphate and increased sphingosine 1-phosphate hydrolysis on mesangial cells cultured at low cell density. 2002 J. Biol. Chem. pmid:11821388
Gonzalez E et al. Rac1 modulates sphingosine 1-phosphate-mediated activation of phosphoinositide 3-kinase/Akt signaling pathways in vascular endothelial cells. 2006 J. Biol. Chem. pmid:16339142
Martin JL et al. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. 2009 J. Biol. Chem. pmid:19633297
Bu S et al. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway. 2008 J. Biol. Chem. pmid:18482992
Young KW et al. Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. 2000 J. Biol. Chem. pmid:10954727
Allende ML et al. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. 2013 J. Biol. Chem. pmid:23637227
Alderton F et al. Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. 2001 J. Biol. Chem. pmid:11359779
Nyalendo C et al. Src-dependent phosphorylation of membrane type I matrix metalloproteinase on cytoplasmic tyrosine 573: role in endothelial and tumor cell migration. 2007 J. Biol. Chem. pmid:17389600
Machesky NJ et al. Human cytomegalovirus regulates bioactive sphingolipids. 2008 J. Biol. Chem. pmid:18644793
Kimura T et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. 2001 J. Biol. Chem. pmid:11427538
Ishii I et al. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. 2001 J. Biol. Chem. pmid:11443127
Wells CD et al. Identification of potential mechanisms for regulation of p115 RhoGEF through analysis of endogenous and mutant forms of the exchange factor. 2001 J. Biol. Chem. pmid:11384980
Okamoto H et al. EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. 1998 J. Biol. Chem. pmid:9765227
Jiang LI et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. 2007 J. Biol. Chem. pmid:17283075
Kono M et al. Deafness and stria vascularis defects in S1P2 receptor-null mice. 2007 J. Biol. Chem. pmid:17284444
Realini N et al. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. 2016 J. Biol. Chem. pmid:26553872
Wang R et al. Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration. 2015 J. Biol. Chem. pmid:26534962
Van Brocklyn JR et al. Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218. 1999 J. Biol. Chem. pmid:9988698
Rani CS et al. Divergence in signal transduction pathways of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors. Involvement of sphingosine 1-phosphate in PDGF but not EGF signaling. 1997 J. Biol. Chem. pmid:9099730
Sano T et al. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. 2002 J. Biol. Chem. pmid:11929870
Spiegel S and Milstien S Sphingosine 1-phosphate, a key cell signaling molecule. 2002 J. Biol. Chem. pmid:12011102
Brinkmann V et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. 2002 J. Biol. Chem. pmid:11967257
Ma Y et al. Sphingosine activates protein kinase A type II by a novel cAMP-independent mechanism. 2005 J. Biol. Chem. pmid:15883165
Hisano Y et al. The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. 2011 J. Biol. Chem. pmid:21084291
Bankovich AJ et al. CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. 2010 J. Biol. Chem. pmid:20463015
Waggoner DW et al. Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. 1996 J. Biol. Chem. pmid:8663293
Sobel K et al. Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling. 2013 J. Biol. Chem. pmid:23589284
Fatatis A and Miller RJ Sphingosine and sphingosine 1-phosphate differentially modulate platelet-derived growth factor-BB-induced Ca2+ signaling in transformed oligodendrocytes. 1996 J. Biol. Chem. pmid:8550576
Gómez-Muñoz A et al. Interaction of ceramides, sphingosine, and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. 1995 J. Biol. Chem. pmid:7592842
Tanimoto T et al. Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). 2002 J. Biol. Chem. pmid:12226078
Kang H et al. Fluid shear stress and sphingosine 1-phosphate activate calpain to promote membrane type 1 matrix metalloproteinase (MT1-MMP) membrane translocation and endothelial invasion into three-dimensional collagen matrices. 2011 J. Biol. Chem. pmid:22002053
Arikawa K et al. Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. 2003 J. Biol. Chem. pmid:12810709
El-Shewy HM et al. Insulin-like growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by transactivating sphingosine 1-phosphate receptors. 2006 J. Biol. Chem. pmid:16926156
Takeshita A et al. Selective stimulation by ceramide of the expression of the alpha isoform of retinoic acid and retinoid X receptors in osteoblastic cells. A role of sphingosine 1-phosphate-mediated AP-1 in the ligand-dependent transcriptional activity of these receptors. 2000 J. Biol. Chem. pmid:10915783
Olivera A et al. Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. 2003 J. Biol. Chem. pmid:12963721
Saba JD et al. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. 1997 J. Biol. Chem. pmid:9334171