Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Heart Failure D006333 36 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenoma D000236 40 associated lipids
Arthritis D001168 41 associated lipids
Hyperalgesia D006930 42 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Psoriasis D011565 47 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Pan S et al. A monoselective sphingosine-1-phosphate receptor-1 agonist prevents allograft rejection in a stringent rat heart transplantation model. 2006 Chem. Biol. pmid:17114004
Karliner JS Off the shelf but not mass produced. 2005 Chem. Biol. pmid:15975506
Jo E et al. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. 2005 Chem. Biol. pmid:15975516
Zhang T et al. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. 2015 Chem. Biol. Interact. pmid:25557508
Kim ES et al. A natural piper-amide-like compound NED-135 exhibits a potent inhibitory effect on the invasive breast cancer cells. 2015 Chem. Biol. Interact. pmid:25980589
Tardieu D et al. Effects of fumonisins on liver and kidney sphinganine and the sphinganine to sphingosine ratio during chronic exposure in ducks. 2006 Chem. Biol. Interact. pmid:16412405
Brahmbhatt VV et al. Novel carbonyl and nitrile products from reactive chlorinating species attack of lysosphingolipid. 2007 Chem. Phys. Lipids pmid:17126823
Sharma C et al. Inhibition of Ca2+ release channel (ryanodine receptor) activity by sphingolipid bases: mechanism of action. 2000 Chem. Phys. Lipids pmid:10660207
Camp SM et al. Pulmonary endothelial cell barrier enhancement by novel FTY720 analogs: methoxy-FTY720, fluoro-FTY720, and β-glucuronide-FTY720. 2015 Chem. Phys. Lipids pmid:26272033
Reina E et al. Determination of sphingosine-1-phosphate lyase activity by gas chromatography coupled to electron impact mass spectrometry. 2012 Chem. Phys. Lipids pmid:22265672
Nussbaumer P et al. An efficient, one-pot synthesis of various ceramide 1-phosphates from sphingosine 1-phosphate. 2008 Chem. Phys. Lipids pmid:18039471
Blaho VA and Hla T Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. 2011 Chem. Rev. pmid:21939239
Bedia C et al. Synthesis of a fluorogenic analogue of sphingosine-1-phosphate and its use to determine sphingosine-1-phosphate lyase activity. 2009 Chembiochem pmid:19226506
Ullrich T et al. Synthesis and immobilization of erythro-C14-omega-aminosphingosine-1-phosphate as a potential tool for affinity chromatography. 2008 ChemMedChem pmid:18000941
Łukomska A et al. The effect of low levels of lead (Pb) in the blood on levels of sphingosine-1-phosphate (S1P) and expression of S1P receptor 1 in the brain of the rat in the perinatal period. 2017 Chemosphere pmid:27697711
Tibboel J et al. Sphingolipids in lung growth and repair. 2014 Chest pmid:24394822
Deng Y et al. Sphingosine Kinase-1/sphingosine 1-phosphate pathway in diabetic nephropathy. 2014 Chin. Med. J. pmid:25131242
Moxon JV et al. Comparison of the serum lipidome in patients with abdominal aortic aneurysm and peripheral artery disease. 2014 Circ Cardiovasc Genet pmid:24448739
Waeber C and Walther T Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. 2014 Circ. J. pmid:24632793
Xu H et al. Sphingosine-1-phosphate receptor agonist, FTY720, restores coronary flow reserve in diabetic rats. 2014 Circ. J. pmid:25319164
Mochizuki N Vascular integrity mediated by vascular endothelial cadherin and regulated by sphingosine 1-phosphate and angiopoietin-1. 2009 Circ. J. pmid:19838001
Tauseef M et al. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. 2008 Circ. Res. pmid:18849324
Urtz N et al. Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo. 2015 Circ. Res. pmid:26129975
Shimizu T et al. Sphingosine 1-phosphate receptor 2 negatively regulates neointimal formation in mouse arteries. 2007 Circ. Res. pmid:17872461
Saba JD and Hla T Point-counterpoint of sphingosine 1-phosphate metabolism. 2004 Circ. Res. pmid:15059942
Pchejetski D et al. Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. 2007 Circ. Res. pmid:17158340
Hughes JE et al. Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. 2008 Circ. Res. pmid:18323526
Igarashi J and Michel T The enigma of sphingosine 1-phosphate synthesis: a novel role for endothelial sphingosine kinases. 2008 Circ. Res. pmid:18369161
Hoefer J et al. Sphingosine-1-phosphate-dependent activation of p38 MAPK maintains elevated peripheral resistance in heart failure through increased myogenic vasoconstriction. 2010 Circ. Res. pmid:20671234
Zhao YD et al. Bone marrow progenitor cells induce endothelial adherens junction integrity by sphingosine-1-phosphate-mediated Rac1 and Cdc42 signaling. 2009 Circ. Res. pmid:19696411
Gazit SL et al. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. 2016 Circ. Res. pmid:27582371
Xu SZ et al. A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. 2006 Circ. Res. pmid:16675717
Erl W and Siess W Sphingosine-1-phosphate and the leading Edg-1 of vascular smooth muscle cells. 2001 Circ. Res. pmid:11557732
Kluk MJ and Hla T Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. 2001 Circ. Res. pmid:11557736
Maceyka M et al. Shooting the messenger: oxidative stress regulates sphingosine-1-phosphate. 2007 Circ. Res. pmid:17204658
Ramasamy R et al. Sphingosine-1-phosphate: waging a battle in the diabetic blood vessel. 2006 Circ. Res. pmid:17008596
Tanimoto T et al. Sphingosine 1-phosphate transactivates the platelet-derived growth factor beta receptor and epidermal growth factor receptor in vascular smooth muscle cells. 2004 Circ. Res. pmid:15044318
Armulik A et al. Endothelial/pericyte interactions. 2005 Circ. Res. pmid:16166562
Birukov KG et al. Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. 2004 Circ. Res. pmid:15472119
Coussin F et al. Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles: differential role in vasoconstriction. 2002 Circ. Res. pmid:12142348
Hla T Plugging vascular leak by sphingosine kinase from bone marrow progenitor cells. 2009 Circ. Res. pmid:19797192
Levkau B Sphingosine-1-phosphate in the regulation of vascular tone: a finely tuned integration system of S1P sources, receptors, and vascular responsiveness. 2008 Circ. Res. pmid:18669929
Ryu Y et al. Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. 2002 Circ. Res. pmid:11861422
Tawa H et al. Role of afadin in vascular endothelial growth factor- and sphingosine 1-phosphate-induced angiogenesis. 2010 Circ. Res. pmid:20413783
Fulton D et al. Agonist-stimulated endothelial nitric oxide synthase activation and vascular relaxation. Role of eNOS phosphorylation at Tyr83. 2008 Circ. Res. pmid:18096817
Whetzel AM et al. Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. 2006 Circ. Res. pmid:16960101
Venkataraman K et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. 2008 Circ. Res. pmid:18258856
Xia P Letter by Xia regarding article, "High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor". 2007 Circulation pmid:17420358
Mann DL Sphingosine 1-phosphate as a therapeutic target in heart failure: more questions than answers. 2012 Circulation pmid:22534620
Meissner A et al. Tumor necrosis factor-α-mediated downregulation of the cystic fibrosis transmembrane conductance regulator drives pathological sphingosine-1-phosphate signaling in a mouse model of heart failure. 2012 Circulation pmid:22534621