Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Heart Failure D006333 36 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Adenoma D000236 40 associated lipids
Arthritis D001168 41 associated lipids
Hyperalgesia D006930 42 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Psoriasis D011565 47 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Sadahira Y et al. Sphingosine-1-phosphate inhibits extracellular matrix protein-induced haptotactic motility but not adhesion of B16 mouse melanoma cells. 1994 FEBS Lett. pmid:8119417
Mattie M et al. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. 1994 J. Biol. Chem. pmid:8106352
Ghosh TK et al. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. 1994 J. Biol. Chem. pmid:8077214
Natarajan V et al. Activation of endothelial cell phospholipase D by sphingosine and sphingosine-1-phosphate. 1994 Am. J. Respir. Cell Mol. Biol. pmid:8049083
Boumendjel A and Miller SP Synthesis of sphingosine-1-phosphate and dihydrosphingosine-1-phosphate. 1994 J. Lipid Res. pmid:7897327
Spiegel S et al. Sphingosine-1-phosphate, a novel second messenger involved in cell growth regulation and signal transduction, affects growth and invasiveness of human breast cancer cells. 1994 Breast Cancer Res. Treat. pmid:7881110
Pushkareva M et al. Stereoselectivity of induction of the retinoblastoma gene product (pRb) dephosphorylation by D-erythro-sphingosine supports a role for pRb in growth suppression by sphingosine. 1995 Biochemistry pmid:7849048
Yatomi Y et al. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. 1995 Blood pmid:7795224
Bornfeldt KE et al. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. 1995 J. Cell Biol. pmid:7790372
Wu J et al. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. 1995 J. Biol. Chem. pmid:7744787
Jalink K et al. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. 1995 Biochem. J. pmid:7733903
Goodemote KA et al. Involvement of a pertussis toxin-sensitive G protein in the mitogenic signaling pathways of sphingosine 1-phosphate. 1995 J. Biol. Chem. pmid:7730331
Durieux ME et al. Responses to sphingosine-1-phosphate in X. laevis oocytes: similarities with lysophosphatidic acid signaling. 1993 Am. J. Physiol. pmid:7684565
Liu R et al. Effects of sphingosine derivatives on MC3T3-E1 pre-osteoblasts: psychosine elicits release of calcium from intracellualr stores. 1995 Biochem. Biophys. Res. Commun. pmid:7677781
Eggerickx D et al. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. 1995 Biochem. J. pmid:7639700
Gómez-Muñoz A et al. Interaction of ceramides, sphingosine, and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. 1995 J. Biol. Chem. pmid:7592842
Törnquist K et al. Sphingosine derivatives inhibit depolarization-evoked calcium entry in rat GH4C1 cells. 1995 Endocrinology pmid:7588222
Yatomi Y et al. Quantitative measurement of sphingosine 1-phosphate in biological samples by acylation with radioactive acetic anhydride. 1995 Anal. Biochem. pmid:7503424
Yu FC et al. Protective effect of sphingosine-1-phosphate for chronic intermittent hypoxia-induced endothelial cell injury. 2018 Biochem. Biophys. Res. Commun. pmid:29550481
Tang HB et al. S1P/S1PR3 signaling mediated proliferation of pericytes via Ras/pERK pathway and CAY10444 had beneficial effects on spinal cord injury. 2018 Biochem. Biophys. Res. Commun. pmid:29534963
Nádró B et al. [The role of apolipoprotein M and sphingosine 1-phosphate axis in the prevention of atherosclerosis]. 2018 Orv Hetil pmid:29376427
Deshpande GP et al. Sphingosine-1-phosphate (S1P) activates STAT3 to protect against de novo acute heart failure (AHF). 2018 Life Sci. pmid:29373815
Książek M et al. Arteriovenous Sphingosine-1-Phosphate Differences Across Selected Organs of the Rat. 2018 Cell. Physiol. Biochem. pmid:29316552
Huang Y et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. 2018 Science pmid:29302015
Ogretmen B Sphingolipid metabolism in cancer signalling and therapy. 2018 Nat. Rev. Cancer pmid:29147025
Wang M et al. Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices. 2017 PLoS ONE pmid:29136008
Tran HB et al. Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD. 2017 PLoS ONE pmid:29112690
Katsuta E et al. Doxorubicin effect is enhanced by sphingosine-1-phosphate signaling antagonist in breast cancer. 2017 J. Surg. Res. pmid:29078883
Vu TM et al. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. 2017 Nature pmid:29045386
Schmidt KG et al. Sphingosine-1-Phosphate Receptor 5 Modulates Early-Stage Processes during Fibrogenesis in a Mouse Model of Systemic Sclerosis: A Pilot Study. 2017 Front Immunol pmid:29033951
Mensah SA et al. Regeneration of glycocalyx by heparan sulfate and sphingosine 1-phosphate restores inter-endothelial communication. 2017 PLoS ONE pmid:29023478
Wang X et al. Sphingosine 1-phosphate alleviates Coxsackievirus B3-induced myocarditis by increasing invariant natural killer T cells. 2017 Exp. Mol. Pathol. pmid:28986246
Werth S et al. Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism. 2017 J. Endocrinol. pmid:28970286
Reinhard NR et al. The balance between Gα-Cdc42/Rac and Gα/-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate. 2017 Mol. Biol. Cell pmid:28954861
Du Y et al. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/ Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway. 2017 Cell. Physiol. Biochem. pmid:28934733
Smith P et al. Sphingosine 1-Phosphate Signaling and Its Pharmacological Modulation in Allogeneic Hematopoietic Stem Cell Transplantation. 2017 Int J Mol Sci pmid:28934113
Anjum I et al. Enhancement of S1P-induced contractile response in detrusor smooth muscle of rats having cystitis. 2017 Eur. J. Pharmacol. pmid:28882559
Haddadi N et al. "Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. 2017 Int J Mol Sci pmid:28869494
Bosteen MH et al. Effects of apolipoprotein M in uremic atherosclerosis. 2017 Atherosclerosis pmid:28866363
Natarajan V et al. Expression profiling of genes regulated by sphingosine kinase1 signaling in a murine model of hyperoxia induced neonatal bronchopulmonary dysplasia. 2017 BMC Genomics pmid:28851267
Olesch C et al. Beyond Immune Cell Migration: The Emerging Role of the Sphingosine-1-phosphate Receptor S1PR4 as a Modulator of Innate Immune Cell Activation. 2017 Mediators Inflamm. pmid:28848247
Kuchler L et al. Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. 2017 Mol. Immunol. pmid:28846923
Egom EE et al. Determination of Sphingosine-1-Phosphate in Human Plasma Using Liquid Chromatography Coupled with Q-Tof Mass Spectrometry. 2017 Int J Mol Sci pmid:28820460
Swendeman SL et al. An engineered S1P chaperone attenuates hypertension and ischemic injury. 2017 Sci Signal pmid:28811382
Nicholas SE et al. Unravelling the interplay of sphingolipids and TGF-β signaling in the human corneal stroma. 2017 PLoS ONE pmid:28806736
Syed SN et al. S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1 or Lipocalin-2. 2017 Mediators Inflamm. pmid:28804221
Doan NB et al. Acid ceramidase confers radioresistance to glioblastoma cells. 2017 Oncol. Rep. pmid:28765947
Arish M et al. Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies. 2017 J. Recept. Signal Transduct. Res. pmid:28758826
Hajny S and Christoffersen C A Novel Perspective on the ApoM-S1P Axis, Highlighting the Metabolism of ApoM and Its Role in Liver Fibrosis and Neuroinflammation. 2017 Int J Mol Sci pmid:28749426
Bertlich M et al. Fingolimod (FTY-720) is Capable of Reversing Tumor Necrosis Factor Induced Decreases in Cochlear Blood Flow. 2017 Otol. Neurotol. pmid:28742634
Koch A et al. Vitamin D Supplementation Enhances C18(dihydro)ceramide Levels in Type 2 Diabetes Patients. 2017 Int J Mol Sci pmid:28714882
Polzin A et al. Plasma sphingosine-1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. 2017 J. Mol. Cell. Cardiol. pmid:28709768
Innamorati G et al. Pleiotropic effects of sphingosine-1-phosphate signaling to control human chorionic mesenchymal stem cell physiology. 2017 Cell Death Dis pmid:28703804
Lee SY et al. Adipocyte-Specific Deficiency of De Novo Sphingolipid Biosynthesis Leads to Lipodystrophy and Insulin Resistance. 2017 Diabetes pmid:28698261
Hutami IR et al. Fas/S1P crosstalk via NF-κB activation in osteoclasts controls subchondral bone remodeling in murine TMJ arthritis. 2017 Biochem. Biophys. Res. Commun. pmid:28687489
Bougault C et al. Involvement of sphingosine kinase/sphingosine 1-phosphate metabolic pathway in spondyloarthritis. 2017 Bone pmid:28684192
Cannavo A et al. β-Blockade Prevents Post-Ischemic Myocardial Decompensation Via βAR-Dependent Protective Sphingosine-1 Phosphate Signaling. 2017 J. Am. Coll. Cardiol. pmid:28683966
Lim J et al. Valproic acid enforces the priming effect of sphingosine-1 phosphate on human mesenchymal stem cells. 2017 Int. J. Mol. Med. pmid:28677769
Tsai CH et al. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression. 2017 Mol Oncol pmid:28672103
Punsawad C and Viriyavejakul P Reduction in serum sphingosine 1-phosphate concentration in malaria. 2017 PLoS ONE pmid:28666023
Wilkerson JL and Mandal NA Angiogenesis Model of Cornea to Understand the Role of Sphingosine 1-Phosphate. 2017 Methods Mol. Biol. pmid:28660590
Luo J et al. The effects of berberine on a murine model of multiple sclerosis and the SPHK1/S1P signaling pathway. 2017 Biochem. Biophys. Res. Commun. pmid:28655617
Chang CH and Randolph GJ Sphingosine-1-Phosphate as the Lymphocyte's Ticket to Ride and Survive. 2017 Dev. Cell pmid:28633013
Fang R et al. Sphingosine 1-Phosphate Postconditioning Protects Against Myocardial Ischemia/reperfusion Injury in Rats via Mitochondrial Signaling and Akt-Gsk3β Phosphorylation. 2017 Arch. Med. Res. pmid:28625317
Xie Z et al. Targeting sphingosine-1-phosphate signaling for cancer therapy. 2017 Sci China Life Sci pmid:28623546
Rohrbach T et al. Sphingosine kinase and sphingosine-1-phosphate in liver pathobiology. 2017 Crit. Rev. Biochem. Mol. Biol. pmid:28618839
Onuma T et al. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor. 2017 Thromb. Res. pmid:28609704
Vijayan M et al. Sphingosine 1-Phosphate Lyase Enhances the Activation of IKKε To Promote Type I IFN-Mediated Innate Immune Responses to Influenza A Virus Infection. 2017 J. Immunol. pmid:28600291
Schumacher F et al. The sphingosine 1-phosphate breakdown product, (2)-hexadecenal, forms protein adducts and glutathione conjugates in vitro. 2017 J. Lipid Res. pmid:28588048
White CR et al. High-Density Lipoprotein Regulation of Mitochondrial Function. 2017 Adv. Exp. Med. Biol. pmid:28551800
Dany M and Elston D Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa. 2017 J. Am. Acad. Dermatol. pmid:28551069
Mendoza A et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. 2017 Nature pmid:28538737
Ma S et al. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis. 2017 Dev. Cell pmid:28535372
Azimzadeh K et al. Evaluation of plasma sphingosine 1-phosphate, hepcidin and cardiovascular damage biomarkers (cardiac troponin I and homocysteine) in rats infected with brucellosis and vaccinated (Rev-1, RB-51). 2017 Microb. Pathog. pmid:28533142
Meshcheryakova A et al. Sphingosine 1-phosphate signaling in bone remodeling: multifaceted roles and therapeutic potential. 2017 Expert Opin. Ther. Targets pmid:28524744
Mitroi DN et al. SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production. 2017 Autophagy pmid:28521611
Kurano M et al. Involvement of Band3 in the efflux of sphingosine 1-phosphate from erythrocytes. 2017 PLoS ONE pmid:28494002
Al-Jarallah A and Oriowo M The effect of sphingosine-1-phosphate on colonic smooth muscle contractility: Modulation by TNBS-induced colitis. 2017 PLoS ONE pmid:28493876
Ko J et al. Sphingosine-1-Phosphate Mediates Fibrosis in Orbital Fibroblasts in Graves' Orbitopathy. 2017 Invest. Ophthalmol. Vis. Sci. pmid:28492873
Oh YT et al. DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. 2017 Cell Commun. Signal pmid:28482915
Fan Q et al. Sphingosine-1-phosphate promotes ovarian cancer cell proliferation by disrupting Hippo signaling. 2017 Oncotarget pmid:28460443
Lafargue A et al. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. 2017 Free Radic. Biol. Med. pmid:28431961
Aoyama-Araki Y et al. Sphingosine-1-Phosphate (S1P)-Related Response of Human Conjunctival Fibroblasts After Filtration Surgery for Glaucoma. 2017 Invest. Ophthalmol. Vis. Sci. pmid:28418499
Yanagida K et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. 2017 Proc. Natl. Acad. Sci. U.S.A. pmid:28396408
Frej C et al. A Shift in ApoM/S1P Between HDL-Particles in Women With Type 1 Diabetes Mellitus Is Associated With Impaired Anti-Inflammatory Effects of the ApoM/S1P Complex. 2017 Arterioscler. Thromb. Vasc. Biol. pmid:28385702
Nakajima M et al. The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. 2017 Tumour Biol. pmid:28381169
Di Pietro M et al. In vivo intrabursal administration of bioactive lipid sphingosine-1-phosphate enhances vascular integrity in a rat model of ovarian hyperstimulation syndrome. 2017 Mol. Hum. Reprod. pmid:28379469
Garbowska M et al. Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes. 2017 J. Cell. Physiol. pmid:28369933
Turner VM and Mabbott NA Ageing adversely affects the migration and function of marginal zone B cells. 2017 Immunology pmid:28369800
Müller J et al. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration. 2017 Biomed Res Int pmid:28367448
Seo Y et al. Sphingosine-1-phosphate is involved in inflammatory reactions in patients with Graves' orbitopathy. 2017 Inflamm. Res. pmid:28364200
King A et al. Sphingosine-1-Phosphate Prevents Egress of Hematopoietic Stem Cells From Liver to Reduce Fibrosis. 2017 Gastroenterology pmid:28363640
Wollny T et al. Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease. 2017 Int J Mol Sci pmid:28362332
Denimal D et al. Impairment of the Ability of HDL From Patients With Metabolic Syndrome but Without Diabetes Mellitus to Activate eNOS: Correction by S1P Enrichment. 2017 Arterioscler. Thromb. Vasc. Biol. pmid:28360087
Gusman DH and Shoemake C Evaluation and Optimization of designed Sphingosine-1-Phosphate (S1P) Receptor Subtype 1 Modulators for the Management of Multiple Sclerosis. 2017 Yale J Biol Med pmid:28356890
Andrieu G et al. Sphingosine 1-phosphate signaling through its receptor S1P promotes chromosome segregation and mitotic progression. 2017 Sci Signal pmid:28351953
Becker S et al. Low sphingosine-1-phosphate plasma levels are predictive for increased mortality in patients with liver cirrhosis. 2017 PLoS ONE pmid:28334008
Takahashi C et al. Vehicle-dependent Effects of Sphingosine 1-phosphate on Plasminogen Activator Inhibitor-1 Expression. 2017 J. Atheroscler. Thromb. pmid:28321011
Karunakaran I and van Echten-Deckert G Sphingosine 1-phosphate - A double edged sword in the brain. 2017 Biochim. Biophys. Acta pmid:28315304
Navarrete A et al. A metabolomic approach shows sphingosine 1-phosphate and lysophospholipids as mediators of the therapeutic effect of liver growth factor in emphysema. 2017 J Pharm Biomed Anal pmid:28314215