Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Pregnancy, Ectopic D011271 5 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Proteinuria D011507 30 associated lipids
Psoriasis D011565 47 associated lipids
Pulmonary Edema D011654 23 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Retinal Detachment D012163 10 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Sarcoma 180 D012510 21 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
De Luca T et al. NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis. 2005 Biofactors pmid:16873929
Perez GI et al. A central role for ceramide in the age-related acceleration of apoptosis in the female germline. 2005 FASEB J. pmid:15728664
Lindner K et al. Ceramide alters endothelial cell permeability by a nonapoptotic mechanism. 2005 Br. J. Pharmacol. pmid:15735657
Ikeda M et al. Sphingolipid-to-glycerophospholipid conversion in SPL-null cells implies the existence of an alternative isozyme. 2005 Biochem. Biophys. Res. Commun. pmid:15737611
Yabu T et al. Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. 2005 Blood pmid:15741222
Kee TH et al. Sphingosine kinase signalling in immune cells. 2005 Clin. Exp. Pharmacol. Physiol. pmid:15743396
Suomalainen L et al. Sphingosine-1-phosphate inhibits nuclear factor kappaB activation and germ cell apoptosis in the human testis independently of its receptors. 2005 Am. J. Pathol. pmid:15743789
Pilorget A et al. Inhibition of angiogenic properties of brain endothelial cells by platelet-derived sphingosine-1-phosphate. 2005 J. Cereb. Blood Flow Metab. pmid:15829917
Hojjati MR et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. 2005 J. Biol. Chem. pmid:15590644
Davis MD et al. Sphingosine 1-phosphate analogs as receptor antagonists. 2005 J. Biol. Chem. pmid:15590668
Lee MS et al. Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. 2005 Am. J. Physiol., Cell Physiol. pmid:15590895
Watterson KR et al. The role of sphingosine-1-phosphate in smooth muscle contraction. 2005 Cell. Signal. pmid:15567060
Hla T Immunology. Dietary factors and immunological consequences. 2005 Science pmid:16150998
Schwab SR et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. 2005 Science pmid:16151014
Donati C et al. Sphingosine 1-phosphate regulates myogenic differentiation: a major role for S1P2 receptor. 2005 FASEB J. pmid:15625079
Damirin A et al. Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells. 2005 Mol. Pharmacol. pmid:15625281
Urata Y et al. Sphingosine 1-phosphate induces alpha-smooth muscle actin expression in lung fibroblasts via Rho-kinase. 2005 Kobe J Med Sci pmid:16199931
Vessey DA et al. A rapid radioassay for sphingosine kinase. 2005 Anal. Biochem. pmid:15649386
Hughes SK et al. Fluid shear stress modulates cell migration induced by sphingosine 1-phosphate and vascular endothelial growth factor. 2005 Ann Biomed Eng pmid:16133909
Foss FW et al. Synthesis, stability, and implications of phosphothioate agonists of sphingosine-1-phosphate receptors. 2005 Bioorg. Med. Chem. Lett. pmid:16125386
van Meeteren LA et al. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. 2005 J. Biol. Chem. pmid:15769751
Tani M et al. Involvement of neutral ceramidase in ceramide metabolism at the plasma membrane and in extracellular milieu. 2005 J. Biol. Chem. pmid:16126722
Huang WR et al. [Effects of sphingosine 1-phosphate on functions of T cell - review]. 2005 Zhongguo Shi Yan Xue Ye Xue Za Zhi pmid:16129068
Saini HS et al. Novel role of sphingosine kinase 1 as a mediator of neurotrophin-3 action in oligodendrocyte progenitors. 2005 J. Neurochem. pmid:16313513
Mizugishi K et al. Essential role for sphingosine kinases in neural and vascular development. 2005 Mol. Cell. Biol. pmid:16314531
Shida D et al. Lysophospholipids transactivate HER2/neu (erbB-2) in human gastric cancer cells. 2005 Biochem. Biophys. Res. Commun. pmid:15649431
Katkade V et al. Domain 5 of cleaved high molecular weight kininogen inhibits endothelial cell migration through Akt. 2005 Thromb. Haemost. pmid:16268479
Wei SH et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. 2005 Nat. Immunol. pmid:16273098
Lee HS et al. Antigen-induced Ca2+ mobilization in RBL-2H3 cells: role of I(1,4,5)P3 and S1P and necessity of I(1,4,5)P3 production. 2005 Cell Calcium pmid:16219349
Chalfant CE and Spiegel S Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. 2005 J. Cell. Sci. pmid:16219683
Armulik A et al. Endothelial/pericyte interactions. 2005 Circ. Res. pmid:16166562
Pchejetski D et al. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. 2005 Cancer Res. pmid:16357178
Itagaki K et al. Lysophosphatidic acid triggers calcium entry through a non-store-operated pathway in human neutrophils. 2005 J. Leukoc. Biol. pmid:15522918
McVerry BJ and Garcia JG In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. 2005 Cell. Signal. pmid:15494205
Waters CM et al. c-Src is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells. 2005 Cell. Signal. pmid:15494217
Kharel Y et al. Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. 2005 J. Biol. Chem. pmid:16093248
Maceyka M et al. Sphingosine kinases, sphingosine-1-phosphate and sphingolipidomics. 2005 Prostaglandins Other Lipid Mediat. pmid:16099387
Danieli-Betto D et al. Sphingosine 1-phosphate protects mouse extensor digitorum longus skeletal muscle during fatigue. 2005 Am. J. Physiol., Cell Physiol. pmid:15659717
Roth Z and Hansen PJ Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. 2005 Reproduction pmid:15695618
Tanski WJ et al. Sphingosine-1-phosphate-induced smooth muscle cell migration involves the mammalian target of rapamycin. 2005 J. Vasc. Surg. pmid:15696050
Björklund S et al. Effects of sphingosine 1-phosphate on calcium signaling, proliferation and S1P2 receptor expression in PC Cl3 rat thyroid cells. 2005 Mol. Cell. Endocrinol. pmid:15713536
Anelli V et al. Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. 2005 J. Neurochem. pmid:15715670
Mehta D et al. Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells. 2005 J. Biol. Chem. pmid:15728185
Chun J Lysophospholipids in the nervous system. 2005 Prostaglandins Other Lipid Mediat. pmid:16099390
Formigli L et al. Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels. 2005 J. Cell. Sci. pmid:15728255
Rosen H Chemical approaches to the lysophospholipid receptors. 2005 Prostaglandins Other Lipid Mediat. pmid:16099402
Minnear FL et al. Sphingosine 1-phosphate prevents platelet-activating factor-induced increase in hydraulic conductivity in rat mesenteric venules: pertussis toxin sensitive. 2005 Am. J. Physiol. Heart Circ. Physiol. pmid:15778280
Inagaki Y et al. Sphingosine 1-phosphate analogue recognition and selectivity at S1P4 within the endothelial differentiation gene family of receptors. 2005 Biochem. J. pmid:15733055
Ohmori T et al. The intracellular action of sphingosine 1-phosphate in GPVI-mediated Ca2+ mobilization in platelets. 2005 Thromb. Res. pmid:15733975
Hsiao SH et al. Effects of exogenous sphinganine, sphingosine, and sphingosine-1-phosphate on relaxation and contraction of porcine thoracic aortic and pulmonary arterial rings. 2005 Toxicol. Sci. pmid:15829618
Murakami T et al. Synthesis and biological properties of novel sphingosine derivatives. 2005 Bioorg. Med. Chem. Lett. pmid:15686924
Edsbagge J et al. Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme. 2005 Development pmid:15689381
Jaillard C et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. 2005 J. Neurosci. pmid:15703400
Geoffroy K et al. Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase of sphingosine-1-phosphate levels. 2005 FEBS Lett. pmid:15710421
Budnik LT and Brunswig-Spickenheier B Differential effects of lysolipids on steroid synthesis in cells expressing endogenous LPA2 receptor. 2005 J. Lipid Res. pmid:15716590
Duan HF et al. [Establishment of a method for determining the sphingosine kinase activity and its initial application]. 2005 Zhongguo Ying Yong Sheng Li Xue Za Zhi pmid:21180179
Takashiro Y et al. Involvement of p38 MAP kinase-mediated cytochrome c release on sphingosine-1-phosphate (S1P)- and N-monomethyl-S1P-induced cell death of PC12 cells. 2005 Biochem. Pharmacol. pmid:15907808
Halin C et al. The S1P-analog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. 2005 Blood pmid:15870184
Takeshita A et al. Sphingosine 1-phosphate acts as a signal molecule in ceramide signal transduction of TNF-alpha-induced activator protein-1 in osteoblastic cell line MC3T3-E1 cells. 2005 J Oral Sci pmid:15881228
Yin Z and Watsky MA Chloride channel activity in human lung fibroblasts and myofibroblasts. 2005 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:15681397
Sauer B et al. Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. 2005 Pharmazie pmid:15881612
Radeke HH et al. Overlapping signaling pathways of sphingosine 1-phosphate and TGF-beta in the murine Langerhans cell line XS52. 2005 J. Immunol. pmid:15728487
Tani M et al. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. 2005 J. Lipid Res. pmid:16061940
Segura BJ et al. Sphingosine-1-phosphate induces early response gene expression in C6 glioma cells. 2005 Brain Res. Mol. Brain Res. pmid:15710251
Johnstone ED et al. Sphingosine-1-phosphate inhibition of placental trophoblast differentiation through a G(i)-coupled receptor response. 2005 J. Lipid Res. pmid:15995175
Rosen H and Goetzl EJ Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. 2005 Nat. Rev. Immunol. pmid:15999095
Yin F and Watsky MA LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. 2005 Invest. Ophthalmol. Vis. Sci. pmid:15914605
Karliner JS Off the shelf but not mass produced. 2005 Chem. Biol. pmid:15975506
Jo E et al. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. 2005 Chem. Biol. pmid:15975516
Li Z et al. Role of guanine nucleotide exchange factor P-Rex-2b in sphingosine 1-phosphate-induced Rac1 activation and cell migration in endothelial cells. 2005 Prostaglandins Other Lipid Mediat. pmid:15967165
Ledent C et al. Premature ovarian aging in mice deficient for Gpr3. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:15956199
Wu WT et al. Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells. 2005 Endocrinology pmid:15878967
Kariya Y et al. Products by the sphingosine kinase/sphingosine 1-phosphate (S1P) lyase pathway but not S1P stimulate mitogenesis. 2005 Genes Cells pmid:15938718
Abbey-Hosch SE et al. Differential regulation of NPR-B/GC-B by protein kinase c and calcium. 2005 Biochem. Pharmacol. pmid:16005434
Osawa Y et al. Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. 2005 J. Biol. Chem. pmid:15946935
Clemens JJ et al. Synthesis of 4(5)-phenylimidazole-based analogues of sphingosine-1-phosphate and FTY720: discovery of potent S1P1 receptor agonists. 2005 Bioorg. Med. Chem. Lett. pmid:15982878
Zaslavsky A et al. Sphingosine-1-phosphate induces a PDGFR-dependent cell detachment via inhibiting beta1 integrin in HEK293 cells. 2005 FEBS Lett. pmid:15987639
Chae SS and Hla T Inhibition of gene expression in vivo using multiplex siRNA. 2005 Methods Mol. Biol. pmid:15990401
Berdyshev EV et al. Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry. 2005 Anal. Biochem. pmid:15766719
Long J et al. Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools. 2005 Biochem. J. pmid:15960610
Malchinkhuu E et al. Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. 2005 Oncogene pmid:16007180
Pébay A et al. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. 2005 Nov-Dec Stem Cells pmid:16081668
Seol GH et al. Sphingosine-1-phosphate-induced intracellular Ca2+ mobilization in human endothelial cells. 2005 Sep-Dec Endothelium pmid:16410226
Dragusin M et al. Effects of sphingosine-1-phosphate and ceramide-1-phosphate on rat intestinal smooth muscle cells: implications for postoperative ileus. 2006 FASEB J. pmid:16877527
Garg SK et al. Does sphingosine 1-phosphate play a protective role in the course of pulmonary tuberculosis? 2006 Clin. Immunol. pmid:17049310
Ahmad M et al. The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. 2006 Prostaglandins Other Lipid Mediat. pmid:16647641
Pan CY et al. Lysophospholipids elevate [Ca2+]i and trigger exocytosis in bovine chromaffin cells. 2006 Neuropharmacology pmid:16616768
Fieber CB et al. Modulation of total Akt kinase by increased expression of a single isoform: requirement of the sphingosine-1-phosphate receptor, Edg3/S1P3, for the VEGF-dependent expression of Akt3 in primary endothelial cells. 2006 Exp. Cell Res. pmid:16527273
Berdyshev EV et al. De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells. 2006 Cell. Signal. pmid:16529909
Schubert R Sphingosine-1-phosphate in the circulatory system: Cause and therapeutic target for vascular dysfunction? 2006 Cardiovasc. Res. pmid:16542647
Xu SZ et al. A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. 2006 Circ. Res. pmid:16675717
Jiang X and Han X Characterization and direct quantitation of sphingoid base-1-phosphates from lipid extracts: a shotgun lipidomics approach. 2006 J. Lipid Res. pmid:16682747
Zhang YH et al. Sphingosine-1-phosphate via activation of a G-protein-coupled receptor(s) enhances the excitability of rat sensory neurons. 2006 J. Neurophysiol. pmid:16723416
Wong RC et al. Gap junctions modulate apoptosis and colony growth of human embryonic stem cells maintained in a serum-free system. 2006 Biochem. Biophys. Res. Commun. pmid:16616002
Olivera A et al. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. 2006 J. Biol. Chem. pmid:16316995
Kawamori T et al. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. 2006 FASEB J. pmid:16319132
Dahm F et al. Distribution and dynamic changes of sphingolipids in blood in response to platelet activation. 2006 J. Thromb. Haemost. pmid:17010150
Rahaman M et al. Neutrophil sphingosine 1-phosphate and lysophosphatidic acid receptors in pneumonia. 2006 Am. J. Respir. Cell Mol. Biol. pmid:16224106
Squecco R et al. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. 2006 Mol. Biol. Cell pmid:16957055
Whetzel AM et al. Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. 2006 Circ. Res. pmid:16960101