Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Influenza, Human D007251 11 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypersensitivity D006967 22 associated lipids
Hyperalgesia D006930 42 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Heart Failure D006333 36 associated lipids
Glioma D005910 112 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Kihara A Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. 2014 Biochim. Biophys. Acta pmid:23994042
Roviezzo F et al. Involvement of proteinase activated receptor-2 in the vascular response to sphingosine 1-phosphate. 2014 Clin. Sci. pmid:24131465
Qin Z et al. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. 2014 Mol. Cancer Ther. pmid:24140934
Ryu JM et al. Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. 2014 Stem Cell Res pmid:24145189
Yu Y et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. 2014 Lipids pmid:24158769
Waeber C and Walther T Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. 2014 Circ. J. pmid:24632793
Willinger T et al. Dynamin 2-dependent endocytosis is required for sustained S1PR1 signaling. 2014 J. Exp. Med. pmid:24638168
Purschke WG et al. Identification and characterization of a mirror-image oligonucleotide that binds and neutralizes sphingosine 1-phosphate, a central mediator of angiogenesis. 2014 Biochem. J. pmid:24832383
Karaca I et al. Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. 2014 J. Biol. Chem. pmid:24808180
Fayyaz S et al. Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P2 receptor subtype. 2014 Diabetologia pmid:24292566
Meng Y et al. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. 2014 Fertil. Steril. pmid:24993801
Kang JW and Lee SM Impaired expression of caveolin-1 contributes to hepatic ischemia and reperfusion injury. 2014 Biochem. Biophys. Res. Commun. pmid:24997335
Snider AJ et al. Distinct roles for hematopoietic and extra-hematopoietic sphingosine kinase-1 in inflammatory bowel disease. 2014 PLoS ONE pmid:25460165
Nakanaga K et al. Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. 2014 J. Biochem. pmid:24451492
Langeslag M et al. Sphingosine 1-phosphate to p38 signaling via S1P1 receptor and Gαi/o evokes augmentation of capsaicin-induced ionic currents in mouse sensory neurons. 2014 Mol Pain pmid:25431213
Callihan P et al. Convergent regulation of neuronal differentiation and Erk and Akt kinases in human neural progenitor cells by lysophosphatidic acid, sphingosine 1-phosphate, and LIF: specific roles for the LPA1 receptor. 2014 ASN Neuro pmid:25424429
Kułakowska A et al. Increased levels of sphingosine-1-phosphate in cerebrospinal fluid of patients diagnosed with tick-borne encephalitis. 2014 J Neuroinflammation pmid:25421616
Gomes L et al. Sphingosine 1-phosphate in acute dengue infection. 2014 PLoS ONE pmid:25409037
Nakamura H and Murayama T Role of sphingolipids in arachidonic acid metabolism. 2014 J. Pharmacol. Sci. pmid:24599139
Guo S et al. Higher level of plasma bioactive molecule sphingosine 1-phosphate in women is associated with estrogen. 2014 Biochim. Biophys. Acta pmid:24603322
Kempf A et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. 2014 PLoS Biol. pmid:24453941
Tao C et al. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic β cells and adipocytes. 2014 Best Pract. Res. Clin. Endocrinol. Metab. pmid:24417945
Hamidi S et al. TLR2/1 and sphingosine 1-phosphate modulate inflammation, myofibroblast differentiation and cell migration in fibroblasts. 2014 Biochim. Biophys. Acta pmid:24440818
Park K et al. The dietary ingredient, genistein, stimulates cathelicidin antimicrobial peptide expression through a novel S1P-dependent mechanism. 2014 J. Nutr. Biochem. pmid:24768661
Schaper K et al. Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. 2014 Mol. Immunol. pmid:24434636
Kono M et al. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. 2014 J. Clin. Invest. pmid:24667638
Obinata H et al. Individual variation of human S1P₁ coding sequence leads to heterogeneity in receptor function and drug interactions. 2014 J. Lipid Res. pmid:25293589
Sasaki H et al. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. 2014 Arch. Biochem. Biophys. pmid:24708996
Fernández-Pisonero I et al. Synergy between sphingosine 1-phosphate and lipopolysaccharide signaling promotes an inflammatory, angiogenic and osteogenic response in human aortic valve interstitial cells. 2014 PLoS ONE pmid:25275309
Ntranos A et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. 2014 J. Neuroimmunol. pmid:24680062
Sassoli C et al. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. 2014 PLoS ONE pmid:25264785
Liu M et al. Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. 2014 J. Biol. Chem. pmid:24318881
Silva VR et al. Hypothalamic S1P/S1PR1 axis controls energy homeostasis. 2014 Nat Commun pmid:25255053
Li F et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. 2014 Hum. Reprod. pmid:24221908
Hirata N et al. Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. 2014 Nat Commun pmid:25254944
Bigaud M et al. Second generation S1P pathway modulators: research strategies and clinical developments. 2014 Biochim. Biophys. Acta pmid:24239768
Iino J et al. Platelet-derived sphingosine 1-phosphate induces migration of Jurkat T cells. 2014 Lipids Health Dis pmid:25253303
Huang YL et al. Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. 2014 Cell. Signal. pmid:24333325
Xiong Y et al. Erythrocyte-derived sphingosine 1-phosphate is essential for vascular development. 2014 J. Clin. Invest. pmid:25250575
Tan SJ et al. Targeted anti-apoptosis activity for ovarian protection against chemotherapy-induced ovarian gonadotoxicity. 2014 Reprod. Biomed. Online pmid:25246113
Goñi FM et al. Biophysical properties of sphingosine, ceramides and other simple sphingolipids. 2014 Biochem. Soc. Trans. pmid:25233422
Yagoub D et al. Sphingosine kinase 1 isoform-specific interactions in breast cancer. 2014 Mol. Endocrinol. pmid:25216046
Awojoodu AO et al. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD. 2014 Blood pmid:25075126
Belvitch P et al. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics. 2014 Microvasc. Res. pmid:25072537
Mendes-da-Cruz DA et al. Semaphorin 3F and neuropilin-2 control the migration of human T-cell precursors. 2014 PLoS ONE pmid:25068647
Moon MH et al. Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes. 2014 Int. J. Mol. Med. pmid:25050633
Wakashima T et al. Dual functions of the trans-2-enoyl-CoA reductase TER in the sphingosine 1-phosphate metabolic pathway and in fatty acid elongation. 2014 J. Biol. Chem. pmid:25049234
Marfia G et al. Autocrine/paracrine sphingosine-1-phosphate fuels proliferative and stemness qualities of glioblastoma stem cells. 2014 Glia pmid:25042636
Fuerst E et al. Sphingosine-1-phosphate induces pro-remodelling response in airway smooth muscle cells. 2014 Allergy pmid:25041788
Tong X et al. The compensatory enrichment of sphingosine -1- phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus. 2014 Cardiovasc Diabetol pmid:24751283
Murakami M et al. Controlled release of sphingosine-1-phosphate agonist with gelatin hydrogels for macrophage recruitment. 2014 Acta Biomater pmid:25038462
Park SJ et al. Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. 2014 Cell. Signal. pmid:25035231
Kim EY et al. Role of sphingosine kinase 1 and sphingosine-1-phosphate in CD40 signaling and IgE class switching. 2014 FASEB J. pmid:25002116
Hao J et al. The interaction between C5a and sphingosine-1-phosphate in neutrophils for antineutrophil cytoplasmic antibody mediated activation. 2014 Arthritis Res. Ther. pmid:25000985
BÅ‚ogowski W et al. Perioperative release of pro-regenerative biochemical signals from human renal allografts subjected to ischemia-reperfusion injury. 2014 Innate Immun pmid:23608824
Sheridan GK and Dev KK Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations. 2014 Sci Rep pmid:24851861
Ni X et al. Interaction of integrin β4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement. 2014 J. Cell. Biochem. pmid:24851274
Vanoli E et al. Vagomimetic effects of fingolimod: physiology and clinical implications. 2014 CNS Neurosci Ther pmid:24836740
Zhang GQ et al. Sphingosine-1-phosphate receptors respond differently to early myocardial ischemia and ischemia-reperfusion in vivo. 2014 Sheng Li Xue Bao pmid:24777407
Ceglarek U et al. Preanalytical standardization of sphingosine-1-phosphate, sphinganine-1-phosphate and sphingosine analysis in human plasma by liquid chromatography-tandem mass spectrometry. 2014 Clin. Chim. Acta pmid:24768784
Brizuela L et al. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. 2014 Mol Oncol pmid:24768038
Poitevin S et al. Sphingosine kinase 1 expressed by endothelial colony-forming cells has a critical role in their revascularization activity. 2014 Cardiovasc. Res. pmid:24743591
O'Sullivan MJ et al. Sphingosine 1-phosphate (S1P) induced interleukin-8 (IL-8) release is mediated by S1P receptor 2 and nuclear factor κB in BEAS-2B cells. 2014 PLoS ONE pmid:24743449
Jesko H et al. Sphingosine kinases modulate the secretion of amyloid β precursor protein from SH-SY5Y neuroblastoma cells: the role of α-synuclein. 2014 Folia Neuropathol pmid:24729344
Zhu Y et al. Vitamin D therapy in experimental allergic encephalomyelitis could be limited by opposing effects of sphingosine 1-phosphate and gelsolin dysregulation. 2014 Mol. Neurobiol. pmid:24722820
Fujii K et al. Sphingosine 1-phosphate increases an intracellular Ca(2+) concentration via S1P3 receptor in cultured vascular smooth muscle cells. 2014 J. Pharm. Pharmacol. pmid:24450400
Ito S et al. TNF-α production in NKT cell hybridoma is regulated by sphingosine-1-phosphate: implications for inflammation in atherosclerosis. 2014 Coron. Artery Dis. pmid:24448174
Czubowicz K and Strosznajder R Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. 2014 Mol. Neurobiol. pmid:24420784
Kerage D et al. Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. 2014 Placenta pmid:24411702
Gil-Ortega M et al. Ex vivo microperfusion system of the adipose organ: a new approach to studying the mobilization of adipose cell populations. 2014 Int J Obes (Lond) pmid:24357852
Maeda Y et al. S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1. 2014 Int. Immunol. pmid:24343820
Guo L et al. Roles of sphingosine-1-phosphate in reproduction. 2014 Reprod Sci pmid:24336672
Shen Z et al. Sphingosine 1-phosphate (S1P) promotes mitochondrial biogenesis in Hep G2 cells by activating Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). 2014 Cell Stress Chaperones pmid:24293320
Chen JJ et al. Non-genomic rapid responses via progesterone in human peripheral T cells are not indirectly mimicked by sphingosine 1-phosphate. 2014 Steroids pmid:24269742
Whisler JA et al. Control of perfusable microvascular network morphology using a multiculture microfluidic system. 2014 Tissue Eng Part C Methods pmid:24151838
Nishi T et al. Molecular and physiological functions of sphingosine 1-phosphate transporters. 2014 Biochim. Biophys. Acta pmid:23921254
Xia JY et al. The adipokine/ceramide axis: key aspects of insulin sensitization. 2014 Biochimie pmid:23969158
Albinet V et al. Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells. 2014 Oncogene pmid:23893239
Zeng Y et al. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24285115
Rao PV Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. 2014 Mar-Apr J Ocul Pharmacol Ther pmid:24283588
Kolahdooz Z et al. Sphingosin-1-phosphate Receptor 1: a Potential Target to Inhibit Neuroinflammation and Restore the Sphingosin-1-phosphate Metabolism. 2015 Can J Neurol Sci pmid:25860537
Ren K et al. Apolipoprotein M. 2015 Clin. Chim. Acta pmid:25858547
Molinari G Is hydrogen ion (H(+)) the real second messenger in calcium signalling? 2015 Cell. Signal. pmid:25843778
Hsu CK et al. Sphingosine-1-phosphate mediates COX-2 expression and PGE2 /IL-6 secretion via c-Src-dependent AP-1 activation. 2015 J. Cell. Physiol. pmid:25201048
Liu M et al. Uncleaved ApoM signal peptide is required for formation of large ApoM/sphingosine 1-phosphate (S1P)-enriched HDL particles. 2015 J. Biol. Chem. pmid:25627684
Hwang IY et al. An essential role for RGS protein/Gαi2 interactions in B lymphocyte-directed cell migration and trafficking. 2015 J. Immunol. pmid:25617475
Mikłosz A et al. Hyperthyroidism evokes myocardial ceramide accumulation. 2015 Cell. Physiol. Biochem. pmid:25613909
Kurek K et al. Sphingolipid metabolism in colorectal adenomas varies depending on histological architecture of polyps and grade of nuclear dysplasia. 2015 Lipids pmid:25595595
Chawla S and Saxena S Differential modulation of S1PR(1-5) and specific activities of SphK and nSMase in pulmonary and cerebral tissues of rats exposed to hypobaric hypoxia. 2015 Lipids pmid:25398597
Cuvillier O [SphingomabTM, an anti-sphingosine 1-phosphate antibody to inhibit hypoxia]. 2015 Med Sci (Paris) pmid:26576602
Moon E et al. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling. 2015 Mediators Inflamm. pmid:26576074
Tang H et al. Expression of Sphingosine-1-phosphate (S1P) on the cerebral vasospasm after subarachnoid hemorrhage in rabbits. 2015 Acta Cir Bras pmid:26560422
Sattler K et al. Defects of High-Density Lipoproteins in Coronary Artery Disease Caused by Low Sphingosine-1-Phosphate Content: Correction by Sphingosine-1-Phosphate-Loading. 2015 J. Am. Coll. Cardiol. pmid:26403344
Yester JW et al. Sphingosine-1-phosphate inhibits IL-1-induced expression of C-C motif ligand 5 via c-Fos-dependent suppression of IFN-β amplification loop. 2015 FASEB J. pmid:26246404
Kharel Y et al. Sphingosine Kinase 2 Inhibition and Blood Sphingosine 1-Phosphate Levels. 2015 J. Pharmacol. Exp. Ther. pmid:26243740
Gao XY et al. Inhibition of sphingosine-1-phosphate phosphatase 1 promotes cancer cells migration in gastric cancer: Clinical implications. 2015 Oncol. Rep. pmid:26239167
Zhang JN et al. The role of the sphingosine-1-phosphate signaling pathway in osteocyte mechanotransduction. 2015 Bone pmid:25988659
Parham KA et al. Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-γ that regulates neoangiogenesis. 2015 FASEB J. pmid:25985799
Schweitzer KS et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25979079
Lee KP et al. DJ-1-mediated upregulation of serine palmitoyltransferase 2 controls vascular neointima via S1P autocrine. 2015 Int. J. Cardiol. pmid:25978603