Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Cardiomyopathies D009202 10 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Adenoma D000236 40 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Vascular Diseases D014652 16 associated lipids
Ovarian Diseases D010049 5 associated lipids
Anemia D000740 21 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Pan CY et al. Lysophospholipids regulate excitability and exocytosis in cultured bovine chromaffin cells. 2007 J. Neurochem. pmid:17630986
Walter DH et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. 2007 Arterioscler. Thromb. Vasc. Biol. pmid:17158356
Phan VH et al. Disruption of sphingolipid metabolism elicits apoptosis-associated reproductive defects in Drosophila. 2007 Dev. Biol. pmid:17706961
Mechtcheriakova D et al. Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. 2007 Cell. Signal. pmid:17113265
Fujiwara Y et al. Identification of the hydrophobic ligand binding pocket of the S1P1 receptor. 2007 J. Biol. Chem. pmid:17114791
Smicun Y et al. S1P and LPA have an attachment-dependent regulatory effect on invasion of epithelial ovarian cancer cells. 2007 Gynecol. Oncol. pmid:17716713
Barthomeuf C Inhibition of S1P-induced angiogenesis, metastasis and inflammation by dietary polyphenols. 2007 Free Radic. Biol. Med. pmid:17189837
Currie JC et al. MT1-MMP down-regulates the glucose 6-phosphate transporter expression in marrow stromal cells: a molecular link between pro-MMP-2 activation, chemotaxis, and cell survival. 2007 J. Biol. Chem. pmid:17229722
Beech DJ Bipolar phospholipid sensing by TRPC5 calcium channel. 2007 Biochem. Soc. Trans. pmid:17233612
Kunisawa J et al. Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. 2007 Blood pmid:17234743
Martino A et al. Sphingosine 1-phosphate interferes on the differentiation of human monocytes into competent dendritic cells. 2007 Scand. J. Immunol. pmid:17212771
Masuko K et al. Sphingosine-1-phosphate attenuates proteoglycan aggrecan expression via production of prostaglandin E2 from human articular chondrocytes. 2007 BMC Musculoskelet Disord pmid:17374154
Young N and Van Brocklyn JR Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. 2007 Exp. Cell Res. pmid:17376432
Nakamura T et al. Synthesis and SAR studies of a novel class of S1P1 receptor antagonists. 2007 Bioorg. Med. Chem. pmid:17379528
Zhao Y et al. Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. 2007 J. Biol. Chem. pmid:17379599
Sato K et al. Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. 2007 J. Neurochem. pmid:17931360
Nodai A et al. Sphingosine 1-phosphate induces cyclooxygenase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. 2007 Life Sci. pmid:17382352
Cai Q et al. Validation of fumonisin biomarkers in F344 rats. 2007 Toxicol. Appl. Pharmacol. pmid:17904604
Aoki S et al. Fluid shear stress enhances the sphingosine 1-phosphate responses in cell-cell interactions between platelets and endothelial cells. 2007 Biochem. Biophys. Res. Commun. pmid:17512899
Huang MC et al. Th17 augmentation in OTII TCR plus T cell-selective type 1 sphingosine 1-phosphate receptor double transgenic mice. 2007 J. Immunol. pmid:17513728
Kontush A et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. 2007 Arterioscler. Thromb. Vasc. Biol. pmid:17569880
Rosen H et al. Tipping the gatekeeper: S1P regulation of endothelial barrier function. 2007 Trends Immunol. pmid:17276731
Liao JJ et al. Cutting edge: Alternative signaling of Th17 cell development by sphingosine 1-phosphate. 2007 J. Immunol. pmid:17442922
Oskeritzian CA et al. Sphingosine-1-phosphate in allergic responses, asthma and anaphylaxis. 2007 Pharmacol. Ther. pmid:17669501
Xu M et al. Sphingosine 1-phosphate rapidly increases endothelial barrier function independently of VE-cadherin but requires cell spreading and Rho kinase. 2007 Am. J. Physiol., Cell Physiol. pmid:17670896
Santucci MB et al. Sphingosine 1-phosphate promotes antigen processing and presentation to CD4+ T cells in Mycobacterium tuberculosis-infected monocytes. 2007 Biochem. Biophys. Res. Commun. pmid:17673170
Tao R et al. Deletion of the sphingosine kinase-1 gene influences cell fate during hypoxia and glucose deprivation in adult mouse cardiomyocytes. 2007 Cardiovasc. Res. pmid:17320845
Roviezzo F et al. Sphingosine-1-phosphate/sphingosine kinase pathway is involved in mouse airway hyperresponsiveness. 2007 Am. J. Respir. Cell Mol. Biol. pmid:17322125
Furukawa A et al. Production of nerve growth factor enhanced in cultured mouse astrocytes by glycerophospholipids, sphingolipids, and their related compounds. 2007 Mol. Cell. Biochem. pmid:17577630
Lavieu G et al. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? 2007 Jan-Feb Autophagy pmid:17035732
Molderings GJ et al. Characterization of an antiproliferative effect of imidazoline receptor ligands on PC12 cells. 2007 Nov-Dec Pharmacol Rep pmid:18195472
Watterson KR et al. Regulation of fibroblast functions by lysophospholipid mediators: potential roles in wound healing. 2007 Sep-Oct Wound Repair Regen pmid:17971005
Dyatlovitskaya EV Sphingolipid receptors. 2008 Biochemistry Mosc. pmid:18298366
Leclercq TM et al. Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. 2008 J. Biol. Chem. pmid:18263879
Moriue T et al. Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells. 2008 Biochem. Biophys. Res. Commun. pmid:18267109
Hashimoto M et al. Sphingosine 1-phosphate potentiates human lung fibroblast chemotaxis through the S1P2 receptor. 2008 Am. J. Respir. Cell Mol. Biol. pmid:18367729
Ryan JJ and Spiegel S The role of sphingosine-1-phosphate and its receptors in asthma. 2008 Drug News Perspect. pmid:18389100
Melendez AJ Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. 2008 Biochim. Biophys. Acta pmid:17913601
Tanaka R et al. Cell-culture-dependent change of Ca2+ response of rat aortic myocytes to sphingosine-1-phosphate. 2008 J. Pharmacol. Sci. pmid:18678983
Alvero AB et al. Anti-tumor activity of phenoxodiol: from bench to clinic. 2008 Future Oncol pmid:18684059
Swaney JS et al. Sphingosine-1-phosphate (S1P) is a novel fibrotic mediator in the eye. 2008 Exp. Eye Res. pmid:18687328
Zeidan YH et al. Molecular targeting of acid ceramidase: implications to cancer therapy. 2008 Curr Drug Targets pmid:18691012
Lucki NC and Sewer MB Multiple roles for sphingolipids in steroid hormone biosynthesis. 2008 Subcell. Biochem. pmid:18751920
Saddoughi SA et al. Roles of bioactive sphingolipids in cancer biology and therapeutics. 2008 Subcell. Biochem. pmid:18751921
Billich A and Baumruker T Sphingolipid metabolizing enzymes as novel therapeutic targets. 2008 Subcell. Biochem. pmid:18751924
Wang L et al. Rho GTPases mediated integrin alpha v beta 3 activation in sphingosine-1-phosphate stimulated chemotaxis of endothelial cells. 2008 Histochem. Cell Biol. pmid:18247041
Venkataraman K et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. 2008 Circ. Res. pmid:18258856
Hadizadeh S et al. Sphingosine-1-phosphate regulates the expression of the liver receptor homologue-1. 2008 Mol. Cell. Endocrinol. pmid:18191017
Severinson E WASp stings mature lymphocytes. 2008 Blood pmid:18988873
Coste O et al. Sphingosine 1-phosphate modulates spinal nociceptive processing. 2008 J. Biol. Chem. pmid:18805787