Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Rhabdomyosarcoma D012208 7 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Cardiomyopathies D009202 10 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Adenoma D000236 40 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Vascular Diseases D014652 16 associated lipids
Ovarian Diseases D010049 5 associated lipids
Anemia D000740 21 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Silva VR et al. Hypothalamic S1P/S1PR1 axis controls energy homeostasis in Middle-Aged Rodents: the reversal effects of physical exercise. 2016 Aging (Albany NY) pmid:28039439
Lei YC et al. C5a/C5aR pathway is essential for up-regulating SphK1 expression through p38-MAPK activation in acute liver failure. 2016 World J. Gastroenterol. pmid:28028363
Al Fadel F et al. Involvement of Sphingosine 1-Phosphate in Palmitate-Induced Non-Alcoholic Fatty Liver Disease. 2016 Cell. Physiol. Biochem. pmid:28006772
Bigaud M et al. Pathophysiological Consequences of a Break in S1P1-Dependent Homeostasis of Vascular Permeability Revealed by S1P1 Competitive Antagonism. 2016 PLoS ONE pmid:28005953
Surya VN et al. Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. 2016 J R Soc Interface pmid:27974574
Soltau I et al. Serum-Sphingosine-1-Phosphate Concentrations Are Inversely Associated with Atherosclerotic Diseases in Humans. 2016 PLoS ONE pmid:27973607
Al Alam N and Kreydiyyeh SI FTY720P inhibits hepatic Na(+)-K(+) ATPase via S1PR2 and PGE2. 2016 Biochem. Cell Biol. pmid:27501354
Evangelisti C et al. Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. 2016 Leukemia pmid:27461062
Stolwijk JA et al. Calcium Signaling Is Dispensable for Receptor Regulation of Endothelial Barrier Function. 2016 J. Biol. Chem. pmid:27624938
Gharbaran R Insights into the molecular roles of heparan sulfate proteoglycans (HSPGs-syndecans) in autocrine and paracrine growth factor signaling in the pathogenesis of Hodgkin's lymphoma. 2016 Tumour Biol. pmid:27317256
Higashi K et al. Sphingosine-1-phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts. 2016 Bone pmid:27612439
Sasset L et al. Sphingolipid De Novo Biosynthesis: A Rheostat of Cardiovascular Homeostasis. 2016 Trends Endocrinol. Metab. pmid:27562337
Roviezzo F et al. Disodium cromoglycate inhibits asthma-like features induced by sphingosine-1-phosphate. 2016 Pharmacol. Res. pmid:27713021
Hemdan NY et al. Modulating sphingosine 1-phosphate signaling with DOP or FTY720 alleviates vascular and immune defects in mouse sepsis. 2016 Eur. J. Immunol. pmid:27683081
Chew WS et al. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. 2016 Pharmacol. Res. pmid:27663260
Wang X et al. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. 2016 PLoS Pathog. pmid:27711202
Adamiak M et al. The Involvment of Hematopoietic-Specific PLC -β2 in Homing and Engraftment of Hematopoietic Stem/Progenitor Cells. 2016 Stem Cell Rev pmid:27704316
Gazit SL et al. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. 2016 Circ. Res. pmid:27582371
Machida T et al. Cellular function and signaling pathways of vascular smooth muscle cells modulated by sphingosine 1-phosphate. 2016 J. Pharmacol. Sci. pmid:27581589
Nagahashi M et al. High levels of sphingolipids in human breast cancer. 2016 J. Surg. Res. pmid:27565080
Dong T et al. Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury. 2016 J Neuroinflammation pmid:27561600
Nojima H et al. Chemokine Receptors, CXCR1 and CXCR2, Differentially Regulate Exosome Release in Hepatocytes. 2016 PLoS ONE pmid:27551720
Harris CM et al. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats. 2016 J. Pharmacol. Exp. Ther. pmid:27519818
Gstalder C et al. FTY720 (Fingolimod) Inhibits HIF1 and HIF2 Signaling, Promotes Vascular Remodeling, and Chemosensitizes in Renal Cell Carcinoma Animal Model. 2016 Mol. Cancer Ther. pmid:27507852
Hashimoto Y et al. Sphingosine-1-phosphate-enhanced Wnt5a promotes osteogenic differentiation in C3H10T1/2 cells. 2016 Cell Biol. Int. pmid:27486054
Viswanathan P et al. Differential elastic responses to barrier-altering agonists in two types of human lung endothelium. 2016 Biochem. Biophys. Res. Commun. pmid:27473658
Moruno Manchon JF et al. SPHK1/sphingosine kinase 1-mediated autophagy differs between neurons and SH-SY5Y neuroblastoma cells. 2016 Autophagy pmid:27467777
Nagahashi M et al. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. 2016 J. Lipid Res. pmid:27459945
Poissonnier A et al. CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice. 2016 Immunity pmid:27438772
Zhang Q et al. Berberine Preconditioning Protects Neurons Against Ischemia via Sphingosine-1-Phosphate and Hypoxia-Inducible Factor-1[Formula: see text]. 2016 Am. J. Chin. Med. pmid:27430910
Adamiak M et al. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation. 2016 Cell Transplant pmid:27412411
Rumzhum NN et al. Effect of Sphingosine 1-Phosphate on Cyclo-Oxygenase-2 Expression, Prostaglandin E2 Secretion, and β2-Adrenergic Receptor Desensitization. 2016 Am. J. Respir. Cell Mol. Biol. pmid:26098693
Hollands A et al. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity. 2016 J. Biol. Chem. pmid:27226531
Mirzaian M et al. Accurate quantification of sphingosine-1-phosphate in normal and Fabry disease plasma, cells and tissues by LC-MS/MS with (13)C-encoded natural S1P as internal standard. 2016 Clin. Chim. Acta pmid:27221202
Bao XH et al. [Role and related mechanism of S1P/S1P1 signal pathway during post conditioning of hypertrophic cardiomyocytes]. 2016 Zhonghua Xin Xue Guan Bing Za Zhi pmid:27220580
Marfia G et al. The Adipose Mesenchymal Stem Cell Secretome Inhibits Inflammatory Responses of Microglia: Evidence for an Involvement of Sphingosine-1-Phosphate Signalling. 2016 Stem Cells Dev. pmid:27217090
Versmissen J et al. Familial hypercholesterolaemia: cholesterol efflux and coronary disease. 2016 Eur. J. Clin. Invest. pmid:27208892
Sauvé M et al. Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes. 2016 Diabetes pmid:27207546
Zhang XE et al. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement. 2016 PLoS ONE pmid:27187066
Ohtoyo M et al. Component of Caramel Food Coloring, THI, Causes Lymphopenia Indirectly via a Key Metabolic Intermediate. 2016 Cell Chem Biol pmid:27185637
Fleming JK et al. A novel approach for measuring sphingosine-1-phosphate and lysophosphatidic acid binding to carrier proteins using monoclonal antibodies and the Kinetic Exclusion Assay. 2016 J. Lipid Res. pmid:27444045
Barnawi J et al. Pro-phagocytic Effects of Thymoquinone on Cigarette Smoke-exposed Macrophages Occur by Modulation of the Sphingosine-1-phosphate Signalling System. 2016 COPD pmid:27144721
Tong S et al. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane. 2016 J. Biol. Chem. pmid:27405756
Jin L et al. The SphKs/S1P/S1PR1 axis in immunity and cancer: more ore to be mined. 2016 World J Surg Oncol pmid:27129720
Nagura Y et al. Regulation of the lysophosphatidylserine and sphingosine 1-phosphate levels in autologous whole blood by the pre-storage leukocyte reduction. 2016 Transfus Med pmid:27350440
Sanchez T Sphingosine-1-Phosphate Signaling in Endothelial Disorders. 2016 Curr Atheroscler Rep pmid:27115142
Crespo I et al. Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin. 2016 J. Pineal Res. pmid:27101794
Riganti L et al. Sphingosine-1-Phosphate (S1P) Impacts Presynaptic Functions by Regulating Synapsin I Localization in the Presynaptic Compartment. 2016 J. Neurosci. pmid:27098703
Cai Y et al. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. 2016 Sci Signal pmid:27095594
Castaldi A et al. Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs. 2016 Cell. Signal. pmid:27094722
Anbazhagan AN et al. Transcriptional modulation of SLC26A3 (DRA) by sphingosine-1-phosphate. 2016 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:27079615
Trinh HK et al. Exploration of the Sphingolipid Metabolite, Sphingosine-1-phosphate and Sphingosine, as Novel Biomarkers for Aspirin-exacerbated Respiratory Disease. 2016 Sci Rep pmid:27830727
Zhang H et al. Binding Characteristics of Sphingosine-1-Phosphate to ApoM hints to Assisted Release Mechanism via the ApoM Calyx-Opening. 2016 Sci Rep pmid:27476912
Tang X et al. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate. 2016 J. Lipid Res. pmid:26884614
Watterson SH et al. Potent and Selective Agonists of Sphingosine 1-Phosphate 1 (S1P1): Discovery and SAR of a Novel Isoxazole Based Series. 2016 J. Med. Chem. pmid:26924461
Liu W et al. Sphingosine-1-phosphate receptor 2 mediates endothelial cells dysfunction by PI3K-Akt pathway under high glucose condition. 2016 Eur. J. Pharmacol. pmid:26921757
Puli MR et al. Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. 2016 Planta pmid:27233507
Yang Y et al. Sphingosine kinase inhibition ameliorates chronic hypoperfusion-induced white matter lesions. 2016 Neurochem. Int. pmid:26921668
Park K et al. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. 2016 Proc. Natl. Acad. Sci. U.S.A. pmid:26903652
Bien-Möller S et al. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme. 2016 Oncotarget pmid:26887055
Uranbileg B et al. Increased mRNA Levels of Sphingosine Kinases and S1P Lyase and Reduced Levels of S1P Were Observed in Hepatocellular Carcinoma in Association with Poorer Differentiation and Earlier Recurrence. 2016 PLoS ONE pmid:26886371
Chumanevich A et al. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2. 2016 Mediators Inflamm. pmid:26884643
Ko P et al. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion. 2016 Sci Rep pmid:26877098
Luo B et al. Erythropoeitin Signaling in Macrophages Promotes Dying Cell Clearance and Immune Tolerance. 2016 Immunity pmid:26872696
Li J et al. Overexpression of SphK1 enhances cell proliferation and invasion in triple-negative breast cancer via the PI3K/AKT signaling pathway. 2016 Tumour Biol. pmid:26857281
Camaré C et al. The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL. 2016 Free Radic. Biol. Med. pmid:26855418
Kim SE et al. The Role of Sphingosine-1-Phosphate in Adipogenesis of Graves' Orbitopathy. 2016 Invest. Ophthalmol. Vis. Sci. pmid:26830367
Messias CV et al. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. 2016 PLoS ONE pmid:26824863
Pászti-Gere E et al. Reinforced Epithelial Barrier Integrity via Matriptase Induction with Sphingosine-1-Phosphate Did Not Result in Disturbances in Physiological Redox Status. 2016 Oxid Med Cell Longev pmid:26823955
Beach JA et al. Sphingosine kinase 1 is required for TGF-β mediated fibroblastto- myofibroblast differentiation in ovarian cancer. 2016 Oncotarget pmid:26716409
Deutsch G et al. Extensive macrophage accumulation in young and old Niemann-Pick C1 model mice involves the alternative, M2, activation pathway and inhibition of macrophage apoptosis. 2016 Gene pmid:26707209
Kim YH and Tabata Y Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure. 2016 J Biomed Mater Res A pmid:26704185
Gomez-Muñoz A et al. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. 2016 Prog. Lipid Res. pmid:26703189
Ottenlinger F et al. Fingolimod targeting protein phosphatase 2A differently affects IL-33 induced IL-2 and IFN-γ production in CD8(+) lymphocytes. 2016 Eur. J. Immunol. pmid:26683421
Fan A et al. Liver X receptor-α and miR-130a-3p regulate expression of sphingosine 1-phosphate receptor 2 in human umbilical vein endothelial cells. 2016 Am. J. Physiol., Cell Physiol. pmid:26669941
Petrache I and Berdyshev EV Ceramide Signaling and Metabolism in Pathophysiological States of the Lung. 2016 Annu. Rev. Physiol. pmid:26667073
Delgado A and Martínez-Cartro M Therapeutic Potential of the Modulation of Sphingosine-1-Phosphate Receptors. 2016 Curr. Med. Chem. pmid:26639095
Yamamoto S et al. A role of the sphingosine-1-phosphate (S1P)-S1P receptor 2 pathway in epithelial defense against cancer (EDAC). 2016 Mol. Biol. Cell pmid:26631556
Kakazu E et al. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. 2016 J. Lipid Res. pmid:26621917
Chen J et al. Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: Role of PPARγ. 2016 Biochim. Biophys. Acta pmid:26615875
Maczis M et al. Sphingosine-1-phosphate and estrogen signaling in breast cancer. 2016 Adv Biol Regul pmid:26601898
Zhang F et al. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. 2016 Am. J. Physiol. Heart Circ. Physiol. pmid:26589326
Tan SF et al. Acid ceramidase is upregulated in AML and represents a novel therapeutic target. 2016 Oncotarget pmid:27825124
Pyne NJ and Tigyi GJ A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. 2016 Prog. Lipid Res. pmid:26584871
Rana A and Sharma S Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: Possible involvement of glycogen synthase kinase 3β and mitochondrial permeability transition pore. 2016 Clin. Exp. Pharmacol. Physiol. pmid:26582369
Li S et al. Sphk1 promotes breast epithelial cell proliferation via NF-κB-p65-mediated cyclin D1 expression. 2016 Oncotarget pmid:27811358
Gao D et al. Metabolomics study on the antitumor effect of marine natural compound flexibilide in HCT-116 colon cancer cell line. 2016 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:26859520
Scotti L et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. 2016 Mol. Hum. Reprod. pmid:27645281
Neubauer HA et al. An oncogenic role for sphingosine kinase 2. 2016 Oncotarget pmid:27588496
Zeng Y et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. 2016 Oncotarget pmid:27556509
Nagahashi M et al. Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods. 2016 J Mammary Gland Biol Neoplasia pmid:27194029
Patmanathan SN et al. Aberrant expression of the S1P regulating enzymes, SPHK1 and SGPL1, contributes to a migratory phenotype in OSCC mediated through S1PR2. 2016 Sci Rep pmid:27160553
Nigro E et al. Role of adiponectin in sphingosine-1-phosphate induced airway hyperresponsiveness and inflammation. 2016 Pharmacol. Res. pmid:26462929
Li N and Zhang F Implication of sphingosin-1-phosphate in cardiovascular regulation. 2016 Front Biosci (Landmark Ed) pmid:27100508
Serdar M et al. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia. 2016 Brain Behav. Immun. pmid:26456693
Arish M et al. Sphingosine-1-phosphate signaling: unraveling its role as a drug target against infectious diseases. 2016 Drug Discov. Today pmid:26456576
Zhang L et al. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels. 2016 Microcirculation pmid:27015105
Kurano M et al. Resveratrol exerts a biphasic effect on apolipoprotein M. 2016 Br. J. Pharmacol. pmid:26445217
Melnik BC Rosacea: The Blessing of the Celts - An Approach to Pathogenesis Through Translational Research. 2016 Acta Derm. Venereol. pmid:26304030
Grammatikos G et al. Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma. 2016 Oncotarget pmid:26933996