Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Huang JS et al. Ethanol potentiates the mitogenic effects of sphingosine 1-phosphate by a zinc- and calcium-dependent mechanism in fibroblasts. 1999 Arch. Biochem. Biophys. pmid:10334873
Kozawa O et al. Sphingosine 1-phosphate regulates heat shock protein 27 induction by a p38 MAP kinase-dependent mechanism in aortic smooth muscle cells. 1999 Exp. Cell Res. pmid:10413591
Augé N et al. Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. 1999 J. Biol. Chem. pmid:10419457
Igarashi Y [Recent development of sphingosin 1-phosphate studies as a second messenger or a second agonist in cell signaling]. 1999 Tanpakushitsu Kakusan Koso pmid:10396983
Hisano N et al. Induction and suppression of endothelial cell apoptosis by sphingolipids: a possible in vitro model for cell-cell interactions between platelets and endothelial cells. 1999 Blood pmid:10361127
Meacci E et al. Effect of Rho and ADP-ribosylation factor GTPases on phospholipase D activity in intact human adenocarcinoma A549 cells. 1999 J. Biol. Chem. pmid:10373471
Tolan D et al. Assessment of the extracellular and intracellular actions of sphingosine 1-phosphate by using the p42/p44 mitogen-activated protein kinase cascade as a model. 1999 Cell. Signal. pmid:10376808
Xia P et al. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. 1999 J. Biol. Chem. pmid:10551885
Dygas A et al. Exogenous sphingosine 1-phosphate and sphingosylphosphorylcholine do not stimulate phospholipase D in C6 glioma cells. 1999 Acta Biochim. Pol. pmid:10453985
Wójcik M and Barańska J Sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate modulate phosphatidylserine homeostasis in glioma C6 cells. 1999 Acta Biochim. Pol. pmid:10453988
Waeber C and Chiu ML In vitro autoradiographic visualization of guanosine-5'-O-(3-[35S]thio)triphosphate binding stimulated by sphingosine 1-phosphate and lysophosphatidic acid. 1999 J. Neurochem. pmid:10461914
Hotchin NA et al. Differential activation of focal adhesion kinase, Rho and Rac by the ninth and tenth FIII domains of fibronectin. 1999 J. Cell. Sci. pmid:10444388
Kon J et al. Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. 1999 J. Biol. Chem. pmid:10446161
Ancellin N and Hla T Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. 1999 J. Biol. Chem. pmid:10383399
Dallalio G et al. Inhibition of human erythroid colony formation by ceramide. 1999 Exp. Hematol. pmid:10390188
Hla T et al. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? 1999 Biochem. Pharmacol. pmid:10423159
Moolenaar WH Bioactive lysophospholipids and their G protein-coupled receptors. 1999 Exp. Cell Res. pmid:10579925
Yang L et al. Metabolism and functional effects of sphingolipids in blood cells. 1999 Br. J. Haematol. pmid:10583213
Lynch KR and Im DS Life on the edg. 1999 Trends Pharmacol. Sci. pmid:10603487
Sato K et al. Sphingosine 1-phosphate induces expression of early growth response-1 and fibroblast growth factor-2 through mechanism involving extracellular signal-regulated kinase in astroglial cells. 1999 Brain Res. Mol. Brain Res. pmid:10640689
English D et al. Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. 1999 J. Hematother. Stem Cell Res. pmid:10645770
Lee MJ et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. 1999 Cell pmid:10555146
Guo J et al. Effects of sphingosine 1-phosphate on pacemaker activity in rabbit sino-atrial node cells. 1999 Pflugers Arch. pmid:10555561
Hong G et al. Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. 1999 FEBS Lett. pmid:10556527
Gottlieb D et al. The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae. 1999 Mol. Cell Biol. Res. Commun. pmid:10329480
Van Brocklyn JR et al. Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218. 1999 J. Biol. Chem. pmid:9988698
Spiegel S et al. Sphingosine-1-phosphate in cell growth and cell death. 1998 Ann. N. Y. Acad. Sci. pmid:9668339
Igarashi Y Sphingosine-1-phosphate as an intercellular signaling molecule. 1998 Ann. N. Y. Acad. Sci. pmid:9668340
Stam JC et al. Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. 1998 EMBO J. pmid:9670021
Himmel HM et al. Guanine nucleotide-sensitive inhibition of L-type Ca2+ current by lysosphingolipids in RINm5F insulinoma cells. 1998 Mol. Pharmacol. pmid:9584212
Tas PW and Koschel K Sphingosine-1-phosphate induces a Ca2+ signal in primary rat astrocytes and a Ca2+ signal and shape changes in C6 rat glioma cells. 1998 J. Neurosci. Res. pmid:9589387
Nakamura H et al. Survival by Mac-1-mediated adherence and anoikis in phorbol ester-treated HL-60 cells. 1998 J. Biol. Chem. pmid:9624115
Orlati S et al. Sphingosylphosphorylcholine and sphingosine-1-phosphate mobilize cytosolic calcium through different mechanisms in human airway epithelial cells. 1998 Cell Calcium pmid:9924630
Yatomi Y et al. [Signal transduction related to sphingosine 1-phosphate]. 1998 Tanpakushitsu Kakusan Koso pmid:9883680
MacDonell KL et al. Depression of excitability by sphingosine 1-phosphate in rat ventricular myocytes. 1998 Am. J. Physiol. pmid:9843831
Chen PF et al. Ca2+ signaling induced by sphingosylphosphorylcholine and sphingosine 1-phosphate via distinct mechanisms in rat glomerular mesangial cells. 1998 Kidney Int. pmid:9844123
Igarashi Y and Yatomi Y Sphingosine 1-phosphate is a blood constituent released from activated platelets, possibly playing a variety of physiological and pathophysiological roles. 1998 Acta Biochim. Pol. pmid:9821862
Goetzl EJ and An S Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. 1998 FASEB J. pmid:9837849
Kovács P et al. The effects of ceramide and its analogues on the secretion of the mucocyst content of Tetrahymena. 1998 Cell. Mol. Biol. (Noisy-le-grand) pmid:9763202
Nagiec MM et al. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. 1998 J. Biol. Chem. pmid:9677363
Van Brocklyn JR et al. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. 1998 J. Cell Biol. pmid:9660876
Noh SJ et al. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes. 1998 J. Cell. Physiol. pmid:9648929
Lee MJ et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. 1998 Science pmid:9488656
van Echten-Deckert G et al. Phosphorylated cis-4-methylsphingosine mimics the mitogenic effect of sphingosine-1-phosphate in Swiss 3T3 fibroblasts. 1998 J. Biol. Chem. pmid:9722598
Melendez A et al. FcgammaRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking. 1998 J. Biol. Chem. pmid:9545263
Spiegel S et al. Roles of sphingosine-1-phosphate in cell growth, differentiation, and death. 1998 Biochemistry Mosc. pmid:9526097
Hamada K et al. Involvement of Mac-1-mediated adherence and sphingosine 1-phosphate in survival of phorbol ester-treated U937 cells. 1998 Biochem. Biophys. Res. Commun. pmid:9535736
Hisano N et al. Quantification of sphingosine derivatives in human platelets: inducible formation of free sphingosine. 1998 J. Biochem. pmid:9538201
Zondag GC et al. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. 1998 Biochem. J. pmid:9480864
Crilly KS et al. The choline kinase inhibitor hemicholinium-3 can inhibit mitogen-induced DNA synthesis independent of its effect on phosphocholine formation. 1998 Arch. Biochem. Biophys. pmid:9521826