Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Sensation Disorders D012678 2 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Thrombocytopenia D013921 15 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Tuberculosis D014376 20 associated lipids
Vascular Diseases D014652 16 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Cui J et al. Role of ceramide in ischemic preconditioning. 2004 J. Am. Coll. Surg. pmid:15110811
Jolly PS et al. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. 2004 J. Exp. Med. pmid:15067032
Segura BJ et al. Sphingosine-1-phosphate mediates calcium signaling in guinea pig enteroglial cells. 2004 J. Surg. Res. pmid:14732348
Sanna MG et al. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. 2004 J. Biol. Chem. pmid:14732717
Forrest M et al. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. 2004 J. Pharmacol. Exp. Ther. pmid:14747617
Tokumura A Metabolic pathways and physiological and pathological significances of lysolipid phosphate mediators. 2004 J. Cell. Biochem. pmid:15258912
Muehlich S et al. Induction of connective tissue growth factor (CTGF) in human endothelial cells by lysophosphatidic acid, sphingosine-1-phosphate, and platelets. 2004 Atherosclerosis pmid:15262182
Kohno T and Igarashi Y Roles for N-glycosylation in the dynamics of Edg-1/S1P1 in sphingosine 1-phosphate-stimulated cells. 2004 Glycoconj. J. pmid:15750791
Barber SC et al. S1P and LPA trigger Schwann cell actin changes and migration. 2004 Eur. J. Neurosci. pmid:15217370
Langlois S et al. Membrane type 1-matrix metalloproteinase (MT1-MMP) cooperates with sphingosine 1-phosphate to induce endothelial cell migration and morphogenic differentiation. 2004 Blood pmid:15070679
Hammer S et al. Glucocorticoids mediate differential anti-apoptotic effects in human fibroblasts and keratinocytes via sphingosine-1-phosphate formation. 2004 J. Cell. Biochem. pmid:14991774
Tokuda H et al. Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. 2004 J. Cell. Biochem. pmid:15034939
vom Dorp F et al. Inhibition of phospholipase C-epsilon by Gi-coupled receptors. 2004 Cell. Signal. pmid:15157671
Nakamura H et al. Effects of synthetic sphingosine-1-phosphate analogs on arachidonic acid metabolism and cell death. 2004 Biochem. Pharmacol. pmid:15498509
Billich A and Ettmayer P Fluorescence-based assay of sphingosine kinases. 2004 Anal. Biochem. pmid:14769343
Mo FM et al. Atypical cannabinoid stimulates endothelial cell migration via a Gi/Go-coupled receptor distinct from CB1, CB2 or EDG-1. 2004 Eur. J. Pharmacol. pmid:15063151
Kelley GG et al. Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. 2004 Biochem. J. pmid:14567755
Chavakis T et al. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis. 2004 FASEB J. pmid:15208269
Xu CB et al. Sphingosine signaling and atherogenesis. 2004 Acta Pharmacol. Sin. pmid:15210056
Yokoo E et al. Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via S1P2: cross-talk between platelets and mast cells. 2004 J. Biochem. pmid:15213242
Pierre SC et al. PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. 2004 EMBO J. pmid:15257286
McVerry BJ and Garcia JG Endothelial cell barrier regulation by sphingosine 1-phosphate. 2004 J. Cell. Biochem. pmid:15258893
Karliner JS Mechanisms of cardioprotection by lysophospholipids. 2004 J. Cell. Biochem. pmid:15258895
Deretic D et al. Phosphoinositides, ezrin/moesin, and rac1 regulate fusion of rhodopsin transport carriers in retinal photoreceptors. 2004 Mol. Biol. Cell pmid:13679519
Waeber C et al. Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. 2004 Jul-Aug Drug News Perspect. pmid:15334188
Stahelin RV et al. The mechanism of membrane targeting of human sphingosine kinase 1. 2005 J. Biol. Chem. pmid:16243846
Zhang B et al. Correlation of high density lipoprotein (HDL)-associated sphingosine 1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. 2005 Atherosclerosis pmid:15585219
Hojjati MR et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. 2005 J. Biol. Chem. pmid:15590644
Davis MD et al. Sphingosine 1-phosphate analogs as receptor antagonists. 2005 J. Biol. Chem. pmid:15590668
Lee MS et al. Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. 2005 Am. J. Physiol., Cell Physiol. pmid:15590895
Kihara A et al. [Function and metabolism of the bioactive lipid molecule sphingosine 1-phosphate]. 2005 Tanpakushitsu Kakusan Koso pmid:16146193
Fieger CB et al. Type 1 sphingosine 1-phosphate G protein-coupled receptor signaling of lymphocyte functions requires sulfation of its extracellular amino-terminal tyrosines. 2005 FASEB J. pmid:16148028
Hla T Immunology. Dietary factors and immunological consequences. 2005 Science pmid:16150998
Schwab SR et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. 2005 Science pmid:16151014
Urata Y et al. Sphingosine 1-phosphate induces alpha-smooth muscle actin expression in lung fibroblasts via Rho-kinase. 2005 Kobe J Med Sci pmid:16199931
Czeloth N et al. Sphingosine-1-phosphate mediates migration of mature dendritic cells. 2005 J. Immunol. pmid:16116182
Bandhuvula P et al. The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. 2005 J. Biol. Chem. pmid:16118221
Kharel Y et al. Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. 2005 J. Biol. Chem. pmid:16093248
Maceyka M et al. Sphingosine kinases, sphingosine-1-phosphate and sphingolipidomics. 2005 Prostaglandins Other Lipid Mediat. pmid:16099387
Danieli-Betto D et al. Sphingosine 1-phosphate protects mouse extensor digitorum longus skeletal muscle during fatigue. 2005 Am. J. Physiol., Cell Physiol. pmid:15659717
Roth Z and Hansen PJ Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. 2005 Reproduction pmid:15695618
Chun J Lysophospholipids in the nervous system. 2005 Prostaglandins Other Lipid Mediat. pmid:16099390
Rosen H Chemical approaches to the lysophospholipid receptors. 2005 Prostaglandins Other Lipid Mediat. pmid:16099402
Tani M et al. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. 2005 J. Lipid Res. pmid:16061940
Katsuma S et al. Transcriptional regulation of connective tissue growth factor by sphingosine 1-phosphate in rat cultured mesangial cells. 2005 FEBS Lett. pmid:15862293
Johnstone ED et al. Sphingosine-1-phosphate inhibition of placental trophoblast differentiation through a G(i)-coupled receptor response. 2005 J. Lipid Res. pmid:15995175
Rosen H and Goetzl EJ Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. 2005 Nat. Rev. Immunol. pmid:15999095
Karliner JS Off the shelf but not mass produced. 2005 Chem. Biol. pmid:15975506
Jo E et al. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. 2005 Chem. Biol. pmid:15975516
Malchinkhuu E et al. Role of p38 mitogen-activated kinase and c-Jun terminal kinase in migration response to lysophosphatidic acid and sphingosine-1-phosphate in glioma cells. 2005 Oncogene pmid:16007180